Таблица сферических гармоник - Table of spherical harmonics
Это таблица ортонормированных сферические гармоники которые используют фазу Кондона-Шортли до степени
= 10. Некоторые из этих формул дают «декартову» версию. Это предполагает Икс, у, z, и р связаны с
и
с помощью обычного преобразования сферических координат в декартовы:
![{ displaystyle { begin {cases} x & = r sin theta cos varphi y & = r sin theta sin varphi z & = r cos theta end {cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5fc078ca98f692ef4c72c4ef940ace57f0c5c228)
Сферические гармоники
= 0[1]
![Y_ {0} ^ {0} ( theta, varphi) = {1 over 2} { sqrt {1 over pi}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/22358c914ad20f7afda032414fa547681a29c6a1)
= 1[1]
![{ displaystyle { begin {align} Y_ {1} ^ {- 1} ( theta, varphi) & = && {1 over 2} { sqrt {3 over 2 pi}} cdot e ^ {-i varphi} cdot sin theta && = && {1 over 2} { sqrt {3 over 2 pi}} cdot {(x-iy) over r} Y_ {1 } ^ {0} ( theta, varphi) & = && {1 over 2} { sqrt {3 over pi}} cdot cos theta && = && {1 over 2} { sqrt {3 over pi}} cdot {z over r} Y_ {1} ^ {1} ( theta, varphi) & = & - & {1 over 2} { sqrt {3 более 2 pi}} cdot e ^ {i varphi} cdot sin theta && = & - & {1 over 2} { sqrt {3 over 2 pi}} cdot {(x + iy) over r} end {выровнен}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7b45983f04a0db8ddd8a3e98c8db50a8d5125e9e)
= 2[1]
![{ displaystyle { begin {align} Y_ {2} ^ {- 2} ( theta, varphi) & = && {1 over 4} { sqrt {15 over 2 pi}} cdot e ^ {-2i varphi} cdot sin ^ {2} theta quad && = && {1 over 4} { sqrt {15 over 2 pi}} cdot {(x-iy) ^ {2 } over r ^ {2}} & Y_ {2} ^ {- 1} ( theta, varphi) & = && {1 over 2} { sqrt {15 over 2 pi}} cdot e ^ {- i varphi} cdot sin theta cdot cos theta quad && = && {1 over 2} { sqrt {15 over 2 pi}} cdot {(x- iy) z over r ^ {2}} & Y_ {2} ^ {0} ( theta, varphi) & = && {1 over 4} { sqrt {5 over pi}} cdot (3 cos ^ {2} theta -1) quad && = && {1 over 4} { sqrt {5 over pi}} cdot {(2z ^ {2} -x ^ {2 } -y ^ {2}) over r ^ {2}} & Y_ {2} ^ {1} ( theta, varphi) & = & - & {1 over 2} { sqrt {15 over 2 pi}} cdot e ^ {i varphi} cdot sin theta cdot cos theta quad && = & - & {1 over 2} { sqrt {15 over 2 pi}} cdot {(x + iy) z over r ^ {2}} & Y_ {2} ^ {2} ( theta, varphi) & = && {1 over 4} { sqrt {15 over 2 pi}} cdot e ^ {2i varphi} cdot sin ^ {2} theta quad && = && {1 over 4} { sqrt {15 over 2 pi} } cdot {(x + iy) ^ {2} over r ^ {2}} & end {выравнивается}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/19f02d16e8eda2eb92f14c243a565fe63f61928a)
= 3[1]
![{ displaystyle { begin {align} Y_ {3} ^ {- 3} ( theta, varphi) & = && {1 over 8} { sqrt {35 over pi}} cdot e ^ { -3i varphi} cdot sin ^ {3} theta quad && = && {1 over 8} { sqrt {35 over pi}} cdot {(x-iy) ^ {3} над r ^ {3}} & Y_ {3} ^ {- 2} ( theta, varphi) & = && {1 over 4} { sqrt {105 over 2 pi}} cdot e ^ {- 2i varphi} cdot sin ^ {2} theta cdot cos theta quad && = && {1 over 4} { sqrt {105 over 2 pi}} cdot {( x-iy) ^ {2} z over r ^ {3}} & Y_ {3} ^ {- 1} ( theta, varphi) & = && {1 over 8} { sqrt {21 over pi}} cdot e ^ {- i varphi} cdot sin theta cdot (5 cos ^ {2} theta -1) quad && = && {1 over 8} { sqrt {21 over pi}} cdot {(x-iy) (5z ^ {2} -r ^ {2}) over r ^ {3}} & Y_ {3} ^ {0} ( theta, varphi) & = && {1 over 4} { sqrt {7 over pi}} cdot (5 cos ^ {3} theta -3 cos theta) quad && = && {1 over 4} { sqrt {7 over pi}} cdot {z (5z ^ {2} -3r ^ {2}) over r ^ {3}} & Y_ {3} ^ {1} ( theta, varphi) & = & - & {1 over 8} { sqrt {21 over pi}} cdot e ^ {i varphi} cdot sin theta cdot ( 5 cos ^ {2} theta -1) quad && = && {- 1 over 8} { sqrt {21 ov эр pi}} cdot {(x + iy) (5z ^ {2} -r ^ {2}) over r ^ {3}} & Y_ {3} ^ {2} ( theta, varphi) & = && {1 over 4} { sqrt {105 over 2 pi}} cdot e ^ {2i varphi} cdot sin ^ {2} theta cdot cos theta quad && = && {1 over 4} { sqrt {105 over 2 pi}} cdot {(x + iy) ^ {2} z over r ^ {3}} & Y_ {3} ^ {3} ( theta, varphi) & = & - & {1 over 8} { sqrt {35 over pi}} cdot e ^ {3i varphi} cdot sin ^ {3} theta quad && = && {- 1 over 8} { sqrt {35 over pi}} cdot {(x + iy) ^ {3} over r ^ {3}} & end {выровнено} }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/55f558a28d021be9f4b0840bbfcac2432972d529)
= 4[1]
![{ displaystyle { begin {align} Y_ {4} ^ {- 4} ( theta, varphi) & = {3 over 16} { sqrt {35 over 2 pi}} cdot e ^ { -4i varphi} cdot sin ^ {4} theta = { frac {3} {16}} { sqrt { frac {35} {2 pi}}} cdot { frac {(x -iy) ^ {4}} {r ^ {4}}} Y_ {4} ^ {- 3} ( theta, varphi) & = {3 over 8} { sqrt {35 over pi}} cdot e ^ {- 3i varphi} cdot sin ^ {3} theta cdot cos theta = { frac {3} {8}} { sqrt { frac {35} { pi}}} cdot { frac {(x-iy) ^ {3} z} {r ^ {4}}} Y_ {4} ^ {- 2} ( theta, varphi) & = {3 over 8} { sqrt {5 over 2 pi}} cdot e ^ {- 2i varphi} cdot sin ^ {2} theta cdot (7 cos ^ {2} theta -1) = { frac {3} {8}} { sqrt { frac {5} {2 pi}}} cdot { frac {(x-iy) ^ {2} cdot (7z ^ {2} -r ^ {2})} {r ^ {4}}} Y_ {4} ^ {- 1} ( theta, varphi) & = {3 over 8} { sqrt {5 over pi}} cdot e ^ {- i varphi} cdot sin theta cdot (7 cos ^ {3} theta -3 cos theta) = { frac {3} {8 }} { sqrt { frac {5} { pi}}} cdot { frac {(x-iy) cdot z cdot (7z ^ {2} -3r ^ {2})} {r ^ {4}}} Y_ {4} ^ {0} ( theta, varphi) & = {3 over 16} { sqrt {1 over pi}} cdot (35 cos ^ {4 } theta -30 cos ^ {2} theta +3) = { frac {3} {16}} { sqrt { frac {1} { pi}}} cdot { frac {(35z ^ {4} -30z ^ {2} r ^ {2} + 3r ^ {4})} {r ^ {4}}} Y_ {4} ^ {1} ( theta, varphi) & = {- 3 over 8} { sqrt {5 over pi} } cdot e ^ {i varphi} cdot sin theta cdot (7 cos ^ {3} theta -3 cos theta) = { frac {-3} {8}} { sqrt { frac {5} { pi}}} cdot { frac {(x + iy) cdot z cdot (7z ^ {2} -3r ^ {2})} {r ^ {4}}} Y_ {4} ^ {2} ( theta, varphi) & = {3 over 8} { sqrt {5 over 2 pi}} cdot e ^ {2i varphi} cdot sin ^ {2} theta cdot (7 cos ^ {2} theta -1) = { frac {3} {8}} { sqrt { frac {5} {2 pi}}} cdot { frac {(x + iy) ^ {2} cdot (7z ^ {2} -r ^ {2})} {r ^ {4}}} Y_ {4} ^ {3} ( theta , varphi) & = {- 3 over 8} { sqrt {35 over pi}} cdot e ^ {3i varphi} cdot sin ^ {3} theta cdot cos theta = { frac {-3} {8}} { sqrt { frac {35} { pi}}} cdot { frac {(x + iy) ^ {3} z} {r ^ {4}} } Y_ {4} ^ {4} ( theta, varphi) & = {3 over 16} { sqrt {35 over 2 pi}} cdot e ^ {4i varphi} cdot sin ^ {4} theta = { frac {3} {16}} { sqrt { frac {35} {2 pi}}} cdot { frac {(x + iy) ^ {4}} {г ^ {4}}} конец {выровнено}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3830a8288dc712afd526a1ff985ac0a3fe9c5425)
= 5[1]
![{ displaystyle { begin {align} Y_ {5} ^ {- 5} ( theta, varphi) & = {3 over 32} { sqrt {77 over pi}} cdot e ^ {- 5i varphi} cdot sin ^ {5} theta Y_ {5} ^ {- 4} ( theta, varphi) & = {3 over 16} { sqrt {385 over 2 pi }} cdot e ^ {- 4i varphi} cdot sin ^ {4} theta cdot cos theta Y_ {5} ^ {- 3} ( theta, varphi) & = {1 более 32} { sqrt {385 over pi}} cdot e ^ {- 3i varphi} cdot sin ^ {3} theta cdot (9 cos ^ {2} theta -1) Y_ {5} ^ {- 2} ( theta, varphi) & = {1 over 8} { sqrt {1155 over 2 pi}} cdot e ^ {- 2i varphi} cdot sin ^ {2} theta cdot (3 cos ^ {3} theta - cos theta) Y_ {5} ^ {- 1} ( theta, varphi) & = {1 over 16} { sqrt {165 over 2 pi}} cdot e ^ {- i varphi} cdot sin theta cdot (21 cos ^ {4} theta -14 cos ^ {2} theta +1) Y_ {5} ^ {0} ( theta, varphi) & = {1 over 16} { sqrt {11 over pi}} cdot (63 cos ^ {5 } theta -70 cos ^ {3} theta +15 cos theta) Y_ {5} ^ {1} ( theta, varphi) & = {- 1 over 16} { sqrt { 165 over 2 pi}} cdot e ^ {i varphi} cdot sin theta cdot (21 cos ^ {4} theta -14 cos ^ {2} theta +1) Г_ {5} ^ {2 } ( theta, varphi) & = {1 over 8} { sqrt {1155 over 2 pi}} cdot e ^ {2i varphi} cdot sin ^ {2} theta cdot ( 3 cos ^ {3} theta - cos theta) Y_ {5} ^ {3} ( theta, varphi) & = {- 1 over 32} { sqrt {385 over pi }} cdot e ^ {3i varphi} cdot sin ^ {3} theta cdot (9 cos ^ {2} theta -1) Y_ {5} ^ {4} ( theta, varphi) & = {3 over 16} { sqrt {385 over 2 pi}} cdot e ^ {4i varphi} cdot sin ^ {4} theta cdot cos theta Y_ {5} ^ {5} ( theta, varphi) & = {- 3 over 32} { sqrt {77 over pi}} cdot e ^ {5i varphi} cdot sin ^ { 5} theta end {выровнено}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7531a6a980d1b5264562942237e2bded2fc2f282)
= 6
![{ displaystyle { begin {align} Y_ {6} ^ {- 6} ( theta, varphi) & = {1 over 64} { sqrt {3003 over pi}} cdot e ^ {- 6i varphi} cdot sin ^ {6} theta Y_ {6} ^ {- 5} ( theta, varphi) & = {3 over 32} { sqrt {1001 over pi} } cdot e ^ {- 5i varphi} cdot sin ^ {5} theta cdot cos theta Y_ {6} ^ {- 4} ( theta, varphi) & = {3 более 32} { sqrt {91 over 2 pi}} cdot e ^ {- 4i varphi} cdot sin ^ {4} theta cdot (11 cos ^ {2} theta -1) Y_ {6} ^ {- 3} ( theta, varphi) & = {1 over 32} { sqrt {1365 over pi}} cdot e ^ {- 3i varphi} cdot sin ^ {3} theta cdot (11 cos ^ {3} theta -3 cos theta) Y_ {6} ^ {- 2} ( theta, varphi) & = {1 over 64} { sqrt {1365 over pi}} cdot e ^ {- 2i varphi} cdot sin ^ {2} theta cdot (33 cos ^ {4} theta -18 cos ^ {2} theta +1) Y_ {6} ^ {- 1} ( theta, varphi) & = {1 over 16} { sqrt {273 over 2 pi}} cdot e ^ {-i varphi} cdot sin theta cdot (33 cos ^ {5} theta -30 cos ^ {3} theta +5 cos theta) Y_ {6} ^ {0 } ( theta, varphi) & = {1 over 32} { sqrt {13 over pi}} cdot (231 cos ^ {6} theta -315 cos ^ {4} theta + 105 cos ^ {2} theta -5) Y_ {6} ^ {1} ( theta, varphi) & = - {1 более 16} { sqrt {273 over 2 pi}} cdot e ^ {i varphi} cdot sin theta cdot (33 cos ^ {5} theta -30 cos ^ {3} theta +5 cos theta) Y_ {6} ^ {2} ( theta, varphi) & = {1 over 64} { sqrt {1365 over pi}} cdot e ^ {2i varphi} cdot sin ^ {2} theta cdot (33 cos ^ {4} theta -18 cos ^ {2} theta +1) Y_ {6} ^ {3} ( theta, varphi) & = - {1 over 32} { sqrt {1365 over pi}} cdot e ^ {3i varphi} cdot sin ^ {3} theta cdot (11 cos ^ {3} theta -3 cos theta) Y_ {6} ^ {4} ( theta, varphi) & = {3 over 32} { sqrt {91 over 2 pi}} cdot e ^ {4i varphi} cdot sin ^ {4} theta cdot (11 cos ^ {2} theta -1) Y_ {6} ^ {5} ( theta, varphi) & = - {3 over 32} { sqrt { 1001 over pi}} cdot e ^ {5i varphi} cdot sin ^ {5} theta cdot cos theta Y_ {6} ^ {6} ( theta, varphi) & = {1 более 64} { sqrt {3003 over pi}} cdot e ^ {6i varphi} cdot sin ^ {6} theta end {align}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/43ab2fb72bf4650c3ea61242de31869a48959311)
= 7
![{ displaystyle { begin {align} Y_ {7} ^ {- 7} ( theta, varphi) & = {3 over 64} { sqrt {715 over 2 pi}} cdot e ^ { -7i varphi} cdot sin ^ {7} theta Y_ {7} ^ {- 6} ( theta, varphi) & = {3 over 64} { sqrt {5005 over pi }} cdot e ^ {- 6i varphi} cdot sin ^ {6} theta cdot cos theta Y_ {7} ^ {- 5} ( theta, varphi) & = {3 over 64} { sqrt {385 over 2 pi}} cdot e ^ {- 5i varphi} cdot sin ^ {5} theta cdot (13 cos ^ {2} theta -1 ) Y_ {7} ^ {- 4} ( theta, varphi) & = {3 over 32} { sqrt {385 over 2 pi}} cdot e ^ {- 4i varphi} cdot sin ^ {4} theta cdot (13 cos ^ {3} theta -3 cos theta) Y_ {7} ^ {- 3} ( theta, varphi) & = {3 over 64} { sqrt {35 over 2 pi}} cdot e ^ {- 3i varphi} cdot sin ^ {3} theta cdot (143 cos ^ {4} theta -66 cos ^ {2} theta +3) Y_ {7} ^ {- 2} ( theta, varphi) & = {3 over 64} { sqrt {35 over pi}} cdot e ^ {- 2i varphi} cdot sin ^ {2} theta cdot (143 cos ^ {5} theta -110 cos ^ {3} theta +15 cos theta) Y_ {7} ^ {- 1} ( theta, varphi) & = {1 over 64} { sqrt {105 over 2 pi}} cdot e ^ {- i varphi} cdot sin тета cdot (429 cos ^ {6} theta -495 cos ^ {4} theta +135 cos ^ {2} theta -5) Y_ {7} ^ {0} ( theta, varphi) & = {1 over 32} { sqrt {15 over pi}} cdot (429 cos ^ {7} theta -693 cos ^ {5} theta +315 cos ^ {3 } theta -35 cos theta) Y_ {7} ^ {1} ( theta, varphi) & = - {1 over 64} { sqrt {105 over 2 pi}} cdot e ^ {i varphi} cdot sin theta cdot (429 cos ^ {6} theta -495 cos ^ {4} theta +135 cos ^ {2} theta -5) Y_ {7} ^ {2} ( theta, varphi) & = {3 over 64} { sqrt {35 over pi}} cdot e ^ {2i varphi} cdot sin ^ {2 } theta cdot (143 cos ^ {5} theta -110 cos ^ {3} theta +15 cos theta) Y_ {7} ^ {3} ( theta, varphi) & = - {3 over 64} { sqrt {35 over 2 pi}} cdot e ^ {3i varphi} cdot sin ^ {3} theta cdot (143 cos ^ {4} theta -66 cos ^ {2} theta +3) Y_ {7} ^ {4} ( theta, varphi) & = {3 over 32} { sqrt {385 over 2 pi} } cdot e ^ {4i varphi} cdot sin ^ {4} theta cdot (13 cos ^ {3} theta -3 cos theta) Y_ {7} ^ {5} ( theta, varphi) & = - {3 over 64} { sqrt {385 over 2 pi}} cdot e ^ {5i varphi} cdot sin ^ {5} theta cdot (13 cos ^ {2} theta -1) Y_ {7} ^ {6} ( theta, varphi) & = {3 over 64} { sqrt {5005 over pi}} cdot e ^ {6i varphi} cdot sin ^ {6} theta cdot cos theta Y_ {7} ^ {7} ( theta, varphi) & = - {3 over 64} { sqrt {715 over 2 pi}} cdot e ^ {7i varphi} cdot sin ^ {7} theta end {выровнено}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f75a03e9a1f3bd9a92282241236beb56ffbb3560)
= 8
![{ displaystyle { begin {align} Y_ {8} ^ {- 8} ( theta, varphi) & = {3 over 256} { sqrt {12155 over 2 pi}} cdot e ^ { -8i varphi} cdot sin ^ {8} theta Y_ {8} ^ {- 7} ( theta, varphi) & = {3 over 64} { sqrt {12155 over 2 pi}} cdot e ^ {- 7i varphi} cdot sin ^ {7} theta cdot cos theta Y_ {8} ^ {- 6} ( theta, varphi) & = { 1 over 128} { sqrt {7293 over pi}} cdot e ^ {- 6i varphi} cdot sin ^ {6} theta cdot (15 cos ^ {2} theta -1 ) Y_ {8} ^ {- 5} ( theta, varphi) & = {3 over 64} { sqrt {17017 over 2 pi}} cdot e ^ {- 5i varphi} cdot sin ^ {5} theta cdot (5 cos ^ {3} theta - cos theta) Y_ {8} ^ {- 4} ( theta, varphi) & = {3 более 128} { sqrt {1309 over 2 pi}} cdot e ^ {- 4i varphi} cdot sin ^ {4} theta cdot (65 cos ^ {4} theta -26 cos ^ {2} theta +1) Y_ {8} ^ {- 3} ( theta, varphi) & = {1 over 64} { sqrt {19635 over 2 pi}} cdot e ^ {- 3i varphi} cdot sin ^ {3} theta cdot (39 cos ^ {5} theta -26 cos ^ {3} theta +3 cos theta) Y_ {8} ^ {- 2} ( theta, varphi) & = {3 over 128} { sqrt {595 over pi}} cdot e ^ {- 2i varphi} cdot sin ^ {2} theta cdot (143 cos ^ {6} theta -143 cos ^ {4} theta +33 cos ^ {2} theta -1) Y_ {8} ^ { -1} ( theta, varphi) & = {3 over 64} { sqrt {17 over 2 pi}} cdot e ^ {- i varphi} cdot sin theta cdot (715 cos ^ {7} theta -1001 cos ^ {5} theta +385 cos ^ {3} theta -35 cos theta) Y_ {8} ^ {0} ( theta, varphi) & = {1 over 256} { sqrt {17 over pi}} cdot (6435 cos ^ {8} theta -12012 cos ^ {6} theta +6930 cos ^ {4 } theta -1260 cos ^ {2} theta +35) Y_ {8} ^ {1} ( theta, varphi) & = {- 3 over 64} { sqrt {17 over 2 pi}} cdot e ^ {i varphi} cdot sin theta cdot (715 cos ^ {7} theta -1001 cos ^ {5} theta +385 cos ^ {3} theta -35 cos theta) Y_ {8} ^ {2} ( theta, varphi) & = {3 over 128} { sqrt {595 over pi}} cdot e ^ {2i varphi} cdot sin ^ {2} theta cdot (143 cos ^ {6} theta -143 cos ^ {4} theta +33 cos ^ {2} theta -1) Y_ {8} ^ {3} ( theta, varphi) & = {- 1 over 64} { sqrt {19635 over 2 pi}} cdot e ^ {3i varphi} cdot sin ^ {3} theta cdot (39 cos ^ {5} theta -26 cos ^ {3} theta +3 cos theta) Y_ {8} ^ {4} ( theta, varphi) & = {3 over 128} { sqrt {1309 over 2 pi}} cdot e ^ {4i varphi} cdot sin ^ {4} theta cdot (65 cos ^ {4} theta -26 cos ^ {2} theta +1) Y_ {8} ^ {5} ( theta, varphi) & = {- 3 over 64} { sqrt {17017 over 2 pi}} cdot e ^ {5i varphi} cdot sin ^ {5} theta cdot (5 cos ^ {3} theta - cos theta) Y_ {8} ^ {6} ( theta, varphi) & = {1 over 128} { sqrt {7293 over pi}} cdot e ^ {6i varphi} cdot sin ^ {6} theta cdot (15 cos ^ {2} theta -1) Y_ {8} ^ {7} ( theta, varphi) & = {- 3 over 64} { sqrt {12155 over 2 pi}} cdot e ^ {7i varphi} cdot sin ^ {7} theta cdot cos theta Y_ {8} ^ {8} ( theta, varphi) & = {3 over 256} { sqrt {12155 over 2 pi}} cdot e ^ {8i varphi} cdot sin ^ {8} theta end {выровнено}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d00961b664bf591069dd69fe871c9837177756)
= 9
![{ displaystyle { begin {align} Y_ {9} ^ {- 9} ( theta, varphi) & = {1 over 512} { sqrt {230945 over pi}} cdot e ^ {- 9i varphi} cdot sin ^ {9} theta Y_ {9} ^ {- 8} ( theta, varphi) & = {3 over 256} { sqrt {230945 over 2 pi }} cdot e ^ {- 8i varphi} cdot sin ^ {8} theta cdot cos theta Y_ {9} ^ {- 7} ( theta, varphi) & = {3 over 512} { sqrt {13585 over pi}} cdot e ^ {- 7i varphi} cdot sin ^ {7} theta cdot (17 cos ^ {2} theta -1) Y_ {9} ^ {- 6} ( theta, varphi) & = {1 over 128} { sqrt {40755 over pi}} cdot e ^ {- 6i varphi} cdot sin ^ {6} theta cdot (17 cos ^ {3} theta -3 cos theta) Y_ {9} ^ {- 5} ( theta, varphi) & = {3 over 256} { sqrt {2717 over pi}} cdot e ^ {- 5i varphi} cdot sin ^ {5} theta cdot (85 cos ^ {4} theta -30 cos ^ {2} theta +1) Y_ {9} ^ {- 4} ( theta, varphi) & = {3 over 128} { sqrt {95095 over 2 pi}} cdot e ^ {-4i varphi} cdot sin ^ {4} theta cdot (17 cos ^ {5} theta -10 cos ^ {3} theta + cos theta) Y_ {9} ^ {- 3} ( theta, varphi) & = {1 over 256} { sqrt {21945 over pi}} cdot e ^ {- 3i varphi} cdot sin ^ {3} theta cdot (221 cos ^ {6} theta -195 cos ^ {4} theta +39 cos ^ {2} theta -1) Y_ {9} ^ {- 2} ( theta, varphi) & = {3 over 128} { sqrt {1045 over pi}} cdot e ^ {- 2i varphi} cdot sin ^ {2} theta cdot (221 cos ^ {7} theta -273 cos ^ {5} theta +91 cos ^ {3} theta -7 cos theta) Y_ {9} ^ {- 1 } ( theta, varphi) & = {3 over 256} { sqrt {95 over 2 pi}} cdot e ^ {- i varphi} cdot sin theta cdot (2431 cos ^ {8} theta -4004 cos ^ {6} theta +2002 cos ^ {4} theta -308 cos ^ {2} theta +7) Y_ {9} ^ {0} ( theta, varphi) & = {1 over 256} { sqrt {19 over pi}} cdot (12155 cos ^ {9} theta -25740 cos ^ {7} theta +18018 cos ^ {5} theta -4620 cos ^ {3} theta +315 cos theta) Y_ {9} ^ {1} ( theta, varphi) & = {- 3 over 256} { sqrt {95 over 2 pi}} cdot e ^ {i varphi} cdot sin theta cdot (2431 cos ^ {8} theta -4004 cos ^ {6} theta + 2002 cos ^ {4} theta -308 cos ^ {2} theta +7) Y_ {9} ^ {2} ( theta, varphi) & = {3 over 128} { sqrt {1045 over pi}} cdot e ^ {2i varphi} cdot sin ^ {2} theta cdot (221 cos ^ {7} theta -273 co s ^ {5} theta +91 cos ^ {3} theta -7 cos theta) Y_ {9} ^ {3} ( theta, varphi) & = {- 1 over 256} { sqrt {21945 over pi}} cdot e ^ {3i varphi} cdot sin ^ {3} theta cdot (221 cos ^ {6} theta -195 cos ^ {4} theta +39 cos ^ {2} theta -1) Y_ {9} ^ {4} ( theta, varphi) & = {3 over 128} { sqrt {95095 over 2 pi }} cdot e ^ {4i varphi} cdot sin ^ {4} theta cdot (17 cos ^ {5} theta -10 cos ^ {3} theta + cos theta) Y_ {9} ^ {5} ( theta, varphi) & = {- 3 over 256} { sqrt {2717 over pi}} cdot e ^ {5i varphi} cdot sin ^ {5} theta cdot (85 cos ^ {4} theta -30 cos ^ {2} theta +1) Y_ {9} ^ {6} ( theta, varphi) & = { 1 over 128} { sqrt {40755 over pi}} cdot e ^ {6i varphi} cdot sin ^ {6} theta cdot (17 cos ^ {3} theta -3 cos theta) Y_ {9} ^ {7} ( theta, varphi) & = {- 3 over 512} { sqrt {13585 over pi}} cdot e ^ {7i varphi} cdot sin ^ {7} theta cdot (17 cos ^ {2} theta -1) Y_ {9} ^ {8} ( theta, varphi) & = {3 over 256} { sqrt {230945 over 2 pi}} cdot e ^ {8i varphi} cdot sin ^ {8} theta cdot cos theta Y_ {9} ^ {9} ( thet a, varphi) & = {- 1 over 512} { sqrt {230945 over pi}} cdot e ^ {9i varphi} cdot sin ^ {9} theta end {align}} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/abce5159d984c272d8781e06427070567649e19e)
= 10
![{ displaystyle { begin {align} Y_ {10} ^ {- 10} ( theta, varphi) & = {1 over 1024} { sqrt {969969 over pi}} cdot e ^ {- 10i varphi} cdot sin ^ {10} theta Y_ {10} ^ {- 9} ( theta, varphi) & = {1 over 512} { sqrt {4849845 over pi} } cdot e ^ {- 9i varphi} cdot sin ^ {9} theta cdot cos theta Y_ {10} ^ {- 8} ( theta, varphi) & = {1 более 512} { sqrt {255255 over 2 pi}} cdot e ^ {- 8i varphi} cdot sin ^ {8} theta cdot (19 cos ^ {2} theta -1) Y_ {10} ^ {- 7} ( theta, varphi) & = {3 over 512} { sqrt {85085 over pi}} cdot e ^ {- 7i varphi} cdot sin ^ {7} theta cdot (19 cos ^ {3} theta -3 cos theta) Y_ {10} ^ {- 6} ( theta, varphi) & = {3 over 1024} { sqrt {5005 over pi}} cdot e ^ {- 6i varphi} cdot sin ^ {6} theta cdot (323 cos ^ {4} theta -102 cos ^ {2} theta +3) Y_ {10} ^ {- 5} ( theta, varphi) & = {3 over 256} { sqrt {1001 over pi}} cdot e ^ { -5i varphi} cdot sin ^ {5} theta cdot (323 cos ^ {5} theta -170 cos ^ {3} theta +15 cos theta) Y_ {10} ^ {- 4} ( theta, varphi) & = {3 over 256} { sqrt {5005 over 2 pi}} cdo te ^ {- 4i varphi} cdot sin ^ {4} theta cdot (323 cos ^ {6} theta -255 cos ^ {4} theta +45 cos ^ {2} theta -1) Y_ {10} ^ {- 3} ( theta, varphi) & = {3 over 256} { sqrt {5005 over pi}} cdot e ^ {- 3i varphi} cdot sin ^ {3} theta cdot (323 cos ^ {7} theta -357 cos ^ {5} theta +105 cos ^ {3} theta -7 cos theta) Y_ {10} ^ {- 2} ( theta, varphi) & = {3 over 512} { sqrt {385 over 2 pi}} cdot e ^ {- 2i varphi} cdot sin ^ {2} theta cdot (4199 cos ^ {8} theta -6188 cos ^ {6} theta +2730 cos ^ {4} theta -364 cos ^ {2} theta + 7) Y_ {10} ^ {- 1} ( theta, varphi) & = {1 over 256} { sqrt {1155 over 2 pi}} cdot e ^ {- i varphi} cdot sin theta cdot (4199 cos ^ {9} theta -7956 cos ^ {7} theta +4914 cos ^ {5} theta -1092 cos ^ {3} theta +63 cos theta) Y_ {10} ^ {0} ( theta, varphi) & = {1 over 512} { sqrt {21 over pi}} cdot (46189 cos ^ {10 } theta -109395 cos ^ {8} theta +90090 cos ^ {6} theta -30030 cos ^ {4} theta +3465 cos ^ {2} theta -63) Y_ { 10} ^ {1} ( theta, varphi) & = {- 1 over 256} { sqrt {1155 over 2 pi}} cdot e ^ {i varp привет} cdot sin theta cdot (4199 cos ^ {9} theta -7956 cos ^ {7} theta +4914 cos ^ {5} theta -1092 cos ^ {3} theta +63 cos theta) Y_ {10} ^ {2} ( theta, varphi) & = {3 over 512} { sqrt {385 over 2 pi}} cdot e ^ {2i varphi} cdot sin ^ {2} theta cdot (4199 cos ^ {8} theta -6188 cos ^ {6} theta +2730 cos ^ {4} theta -364 cos ^ {2} theta +7) Y_ {10} ^ {3} ( theta, varphi) & = {- 3 over 256} { sqrt {5005 over pi}} cdot e ^ { 3i varphi} cdot sin ^ {3} theta cdot (323 cos ^ {7} theta -357 cos ^ {5} theta +105 cos ^ {3} theta -7 cos theta) Y_ {10} ^ {4} ( theta, varphi) & = {3 over 256} { sqrt {5005 over 2 pi}} cdot e ^ {4i varphi} cdot sin ^ {4} theta cdot (323 cos ^ {6} theta -255 cos ^ {4} theta +45 cos ^ {2} theta -1) Y_ {10} ^ {5} ( theta, varphi) & = {- 3 over 256} { sqrt {1001 over pi}} cdot e ^ {5i varphi} cdot sin ^ {5} theta cdot (323 cos ^ {5} theta -170 cos ^ {3} theta +15 cos theta) Y_ {10} ^ {6} ( theta, varphi) & = {3 более 1024} { sqrt {5005 over pi}} cdot e ^ {6i varphi} cdot sin ^ {6} theta cdot (323 cos ^ {4} theta -102 cos ^ {2} theta +3) Y_ {10} ^ {7} ( theta, varphi) & = {- 3 over 512} { sqrt {85085 over pi}} cdot e ^ {7i varphi} cdot sin ^ {7} theta cdot (19 cos ^ {3} theta -3 cos theta) Y_ {10} ^ {8} ( theta, varphi) & = {1 over 512} { sqrt {255255 over 2 pi}} cdot e ^ {8i varphi} cdot sin ^ { 8} theta cdot (19 cos ^ {2} theta -1) Y_ {10} ^ {9} ( theta, varphi) & = {- 1 over 512} { sqrt {4849845 over pi}} cdot e ^ {9i varphi} cdot sin ^ {9} theta cdot cos theta Y_ {10} ^ {10} ( theta, varphi) & = {1 более 1024} { sqrt {969969 over pi}} cdot e ^ {10i varphi} cdot sin ^ {10} theta end {align}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7055e98532d78dd1e481738efc7e29909e177c32)
Реальные сферические гармоники
Для каждой реальной сферической гармоники соответствующий символ атомной орбиты (s, п, d, ж, грамм) также сообщается.
= 0[2][3]
![{ begin {align} Y_ {00} & = s = Y_ {0} ^ {0} = { frac {1} {2}} { sqrt { frac {1} { pi}}} end {выровнено}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9192eefc9333712155e575c15179dcda7efcd2ff)
= 1[2][3]
![{ displaystyle { begin {align} Y_ {1, -1} & = p_ {y} = i { sqrt { frac {1} {2}}} left (Y_ {1} ^ {- 1} + Y_ {1} ^ {1} right) = { sqrt { frac {3} {4 pi}}} cdot { frac {y} {r}} Y_ {1,0} & = p_ {z} = Y_ {1} ^ {0} = { sqrt { frac {3} {4 pi}}} cdot { frac {z} {r}} Y_ {1,1 } & = p_ {x} = { sqrt { frac {1} {2}}} left (Y_ {1} ^ {- 1} -Y_ {1} ^ {1} right) = { sqrt { frac {3} {4 pi}}} cdot { frac {x} {r}} end {align}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bff0bb5801ca02ed2c4226c2b23b391d5eefcfb7)
= 2[2][3]
![{ displaystyle { begin {align} Y_ {2, -2} & = d_ {xy} = i { sqrt { frac {1} {2}}} left (Y_ {2} ^ {- 2} -Y_ {2} ^ {2} right) = { frac {1} {2}} { sqrt { frac {15} { pi}}} cdot { frac {xy} {r ^ { 2}}} Y_ {2, -1} & = d_ {yz} = i { sqrt { frac {1} {2}}} left (Y_ {2} ^ {- 1} + Y_ { 2} ^ {1} right) = { frac {1} {2}} { sqrt { frac {15} { pi}}} cdot { frac {yz} {r ^ {2}} } Y_ {2,0} & = d_ {z ^ {2}} = Y_ {2} ^ {0} = { frac {1} {4}} { sqrt { frac {5} { pi}}} cdot { frac {-x ^ {2} -y ^ {2} + 2z ^ {2}} {r ^ {2}}} Y_ {2,1} & = d_ {xz } = { sqrt { frac {1} {2}}} left (Y_ {2} ^ {- 1} -Y_ {2} ^ {1} right) = { frac {1} {2} } { sqrt { frac {15} { pi}}} cdot { frac {zx} {r ^ {2}}} Y_ {2,2} & = d_ {x ^ {2} - y ^ {2}} = { sqrt { frac {1} {2}}} left (Y_ {2} ^ {- 2} + Y_ {2} ^ {2} right) = { frac { 1} {4}} { sqrt { frac {15} { pi}}} cdot { frac {x ^ {2} -y ^ {2}} {r ^ {2}}} end { выровнено}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c199c5c7f8c5cc1ead6b2de07b548fe52c93739a)
= 3[2]
![{ displaystyle { begin {align} Y_ {3, -3} & = f_ {y (3x ^ {2} -y ^ {2})} = i { sqrt { frac {1} {2}} } left (Y_ {3} ^ {- 3} + Y_ {3} ^ {3} right) = { frac {1} {4}} { sqrt { frac {35} {2 pi} }} cdot { frac { left (3x ^ {2} -y ^ {2} right) y} {r ^ {3}}} Y_ {3, -2} & = f_ {xyz} = i { sqrt { frac {1} {2}}} left (Y_ {3} ^ {- 2} -Y_ {3} ^ {2} right) = { frac {1} {2} } { sqrt { frac {105} { pi}}} cdot { frac {xyz} {r ^ {3}}} Y_ {3, -1} & = f_ {yz ^ {2} } = i { sqrt { frac {1} {2}}} left (Y_ {3} ^ {- 1} + Y_ {3} ^ {1} right) = { frac {1} {4 }} { sqrt { frac {21} {2 pi}}} cdot { frac {y (4z ^ {2} -x ^ {2} -y ^ {2})} {r ^ {3 }}} Y_ {3,0} & = f_ {z ^ {3}} = Y_ {3} ^ {0} = { frac {1} {4}} { sqrt { frac {7} { pi}}} cdot { frac {z (2z ^ {2} -3x ^ {2} -3y ^ {2})} {r ^ {3}}} Y_ {3,1} & = f_ {xz ^ {2}} = { sqrt { frac {1} {2}}} left (Y_ {3} ^ {- 1} -Y_ {3} ^ {1} right) = { frac {1} {4}} { sqrt { frac {21} {2 pi}}} cdot { frac {x (4z ^ {2} -x ^ {2} -y ^ {2}) )} {r ^ {3}}} Y_ {3,2} & = f_ {z (x ^ {2} -y ^ {2})} = { sqrt { frac {1} {2} }} left (Y_ {3} ^ {- 2} + Y_ {3} ^ {2} right) = { frac {1} {4}} { sqrt { frac {105} { pi} }} cdot { frac { left (x ^ {2} -y ^ {2} right) z} {r ^ {3}}} Y_ {3,3} & = f_ {x (x ^ {2} -3y ^ {2}) } = { sqrt { frac {1} {2}}} left (Y_ {3} ^ {- 3} -Y_ {3} ^ {3} right) = { frac {1} {4} } { sqrt { frac {35} {2 pi}}} cdot { frac { left (x ^ {2} -3y ^ {2} right) x} {r ^ {3}}} конец {выровнено}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/265b184e6b99b2966d001fdd8b7dd10f15581a6a)
= 4
![{ displaystyle { begin {align} Y_ {4, -4} & = g_ {xy (x ^ {2} -y ^ {2})} = i { sqrt { frac {1} {2}} } left (Y_ {4} ^ {- 4} -Y_ {4} ^ {4} right) = { frac {3} {4}} { sqrt { frac {35} { pi}} } cdot { frac {xy left (x ^ {2} -y ^ {2} right)} {r ^ {4}}} Y_ {4, -3} & = g_ {zy ^ { 3}} = i { sqrt { frac {1} {2}}} left (Y_ {4} ^ {- 3} + Y_ {4} ^ {3} right) = { frac {3} {4}} { sqrt { frac {35} {2 pi}}} cdot { frac {(3x ^ {2} -y ^ {2}) yz} {r ^ {4}}} Y_ {4, -2} & = g_ {z ^ {2} xy} = i { sqrt { frac {1} {2}}} left (Y_ {4} ^ {- 2} -Y_ { 4} ^ {2} right) = { frac {3} {4}} { sqrt { frac {5} { pi}}} cdot { frac {xy cdot (7z ^ {2} -r ^ {2})} {r ^ {4}}} Y_ {4, -1} & = g_ {z ^ {3} y} = i { sqrt { frac {1} {2} }} left (Y_ {4} ^ {- 1} + Y_ {4} ^ {1} right) = { frac {3} {4}} { sqrt { frac {5} {2 pi }}} cdot { frac {yz cdot (7z ^ {2} -3r ^ {2})} {r ^ {4}}} Y_ {4,0} & = g_ {z ^ {4 }} = Y_ {4} ^ {0} = { frac {3} {16}} { sqrt { frac {1} { pi}}} cdot { frac {(35z ^ {4} - 30z ^ {2} r ^ {2} + 3r ^ {4})} {r ^ {4}}} Y_ {4,1} & = g_ {z ^ {3} x} = { sqrt { frac {1} {2}}} left (Y_ {4} ^ {- 1} -Y_ {4} ^ {1} right) = { frac {3} {4}} { sqrt { гидроразрыв {5} {2 pi}}} cdot { frac {xz cdot (7z ^ {2} -3r ^ {2})} {r ^ {4}}} Y_ {4,2} & = g_ {z ^ {2} (x ^ {2} -y ^ {2})} = { sqrt { frac {1} {2}}} left (Y_ {4} ^ {- 2} + Y_ {4} ^ {2} right) = { frac {3} {8}} { sqrt { frac {5} { pi}}} cdot { frac {(x ^ {2} -y ^ {2 }) cdot (7z ^ {2} -r ^ {2})} {r ^ {4}}} Y_ {4,3} & = g_ {zx ^ {3}} = { sqrt { frac {1} {2}}} left (Y_ {4} ^ {- 3} -Y_ {4} ^ {3} right) = { frac {3} {4}} { sqrt { frac {35} {2 pi}}} cdot { frac {(x ^ {2} -3y ^ {2}) xz} {r ^ {4}}} Y_ {4,4} & = g_ {x ^ {4} + y ^ {4}} = { sqrt { frac {1} {2}}} left (Y_ {4} ^ {- 4} + Y_ {4} ^ {4} справа) = { frac {3} {16}} { sqrt { frac {35} { pi}}} cdot { frac {x ^ {2} left (x ^ {2} -3y ^ {2} right) -y ^ {2} left (3x ^ {2} -y ^ {2} right)} {r ^ {4}}} end {выровнено}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9c55ecf1960ca421c0edc3aa5c1e2166b9d6a890)
Смотрите также
внешняя ссылка
Рекомендации
- Цитированные ссылки
- Общие ссылки