Преобразование Куммерса ряда - Kummers transformation of series - Wikipedia
В математике, особенно в области числовой анализ, Куммер преобразование ряда это метод, используемый для ускорить конвергенцию бесконечной серии. Метод был впервые предложен Эрнст Куммер в 1837 г.
Позволять
![{ Displaystyle А = сумма _ {п = 1} ^ { infty} а_ {п}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/40f0a9f2d42fbb08928710df6e4ed8192e9b90b1)
- бесконечная сумма, значение которой мы хотим вычислить, и пусть
![{ displaystyle B = sum _ {n = 1} ^ { infty} b_ {n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0d794b7c89ace2cc5c834f4fbf0a4024780bbce0)
быть бесконечной суммой со сравнимыми членами, значение которых известно. Если
![{ displaystyle lim _ {n to infty} { frac {a_ {n}} {b_ {n}}} = gamma neq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/62eb0bf9f32bd80bcbba0a6712f149cc16135a1e)
тогда A легче вычислить как
![{ displaystyle A = gamma B + sum _ {n = 1} ^ { infty} left (1- gamma { frac {b_ {n}} {a_ {n}}} right) a_ {n } = gamma B + sum _ {n = 1} ^ { infty} a_ {n} - gamma b_ {n}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cd849084ad47dab3e6be41e9b15cc18118d9d0f8)
Пример
Применяем метод ускорения Формула Лейбница для π:
![{ displaystyle 1 , - , { frac {1} {3}} , + , { frac {1} {5}} , - , { frac {1} {7}} , + , { frac {1} {9}} , - , cdots , = , { frac { pi} {4}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fab3e3e4febf987b57159d81fd47995fb0af1240)
Термины первой группы попарно как
![{ displaystyle 1- left ({ frac {1} {3}} - { frac {1} {5}} right) - left ({ frac {1} {7}} - { frac {1} {9}} right) + cdots}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f6aa178e5e4f823871cd6f519a3d873e7d8371cd)
![{ displaystyle , = 1-2 left ({ frac {1} {15}} + { frac {1} {63}} + cdots right) = 1-2A}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49524bfcf3665b4f31da0b3d888f8de6226669a4)
куда
![{ Displaystyle А = сумма _ {п = 1} ^ { infty} { гидроразрыва {1} {16n ^ {2} -1}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9ca217c5a649bb23f70dc239a425c48b06267cfb)
Позволять
![{ displaystyle B = sum _ {n = 1} ^ { infty} { frac {1} {4n ^ {2} -1}} = { frac {1} {3}} + { frac { 1} {15}} + cdots}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1d2f562d24eb0697e71a46090d9d6c5b0eb56b23)
![{ displaystyle , = { frac {1} {2}} - { frac {1} {6}} + { frac {1} {6}} - { frac {1} {10}} + cdots}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5d242ef421cb4ae453c02582786e2ae52b471ba5)
который является телескопическая серия с суммой1⁄2.В этом случае
![{ displaystyle gamma = lim _ {n to infty} { frac { frac {1} {16n ^ {2} -1}} { frac {1} {4n ^ {2} -1} }} = { frac {4n ^ {2} -1} {16n ^ {2} -1}} = { frac {1} {4}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1a168a78cc1f8d1dfea1e1013795bcce02d4549e)
и преобразование Куммера дает
![{ displaystyle A = { frac {1} {4}} cdot { frac {1} {2}} + sum _ {n = 1} ^ { infty} left (1 - { frac { 1} {4}} { frac { frac {1} {4n ^ {2} -1}} { frac {1} {16n ^ {2} -1}}} right) { frac {1 } {16n ^ {2} -1}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/897ccfa79fb7e9762b3b376222dc913323cb92de)
Это упрощает
![{ displaystyle A = { frac {1} {8}} - { frac {3} {4}} sum _ {n = 1} ^ { infty} { frac {1} {(16n ^ { 2} -1) (4n ^ {2} -1)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7eb81325640f720a24c5e36d4f94b2657d06eadc)
который сходится намного быстрее, чем исходный ряд.
Смотрите также
Рекомендации
внешняя ссылка