Теорема Фрейденталя о подвеске - Freudenthal suspension theorem - Wikipedia
Эта статья включает Список ссылок, связанное чтение или внешняя ссылка, но его источники остаются неясными, потому что в нем отсутствует встроенные цитаты.Июнь 2020 г.) (Узнайте, как и когда удалить этот шаблон сообщения) ( |
В математика, и особенно в области теория гомотопии, то Теорема Фрейденталя о подвеске является фундаментальным результатом, ведущим к концепции стабилизации гомотопические группы и в конечном итоге теория стабильной гомотопии. Это объясняет поведение одновременного приема подвески и увеличивая индекс гомотопических групп рассматриваемого пространства. Это было доказано в 1937 г. Ганс Фройденталь.
Теорема является следствием гомотопическая теорема об удалении.
Формулировка теоремы
Позволять Икс быть п-связаны заостренное пространство (заостренный CW-комплекс или указал симплициальный набор ). Карта
индуцирует карту
на гомотопических группах, где Ω обозначает функтор цикла а Σ обозначает пониженный функтор подвески. Теорема о надстройке утверждает, что индуцированное отображение на гомотопических группах является изоморфизм если k ≤ 2п и эпиморфизм если k = 2п + 1.
Основной результат о пространствах циклов дает соотношение
так что иначе теорему можно было бы сформулировать в терминах отображения
с небольшой оговоркой, что в этом случае нужно быть осторожным с индексацией.
Доказательство
Как упоминалось выше, теорема Фрейденталя о приостановке быстро следует из гомотопическое удаление; это доказательство проводится в терминах естественного отображения . Если пробел является -связаны, то пара пространств является -связано, где это уменьшенный конус над ; это следует из относительная гомотопия длинная точная последовательность. Мы можем разложить как две копии , сказать , пересечение которого . Тогда гомотопическое вырезание говорит, что карта включения:
индуцирует изоморфизмы на и сюрприз на . Из той же относительно длинной точной последовательности, а так как конусы, кроме того, сжимаются,
Собирая все вместе, получаем
за , т.е. , как заявлено выше; за левое и правое отображения являются изоморфизмами, независимо от того, насколько связаны есть, а средний - выделение путем вырезания, поэтому композиция представляет собой выделение, как заявлено.
Следствие 1.
Позволять Sп обозначить п-сфера и обратите внимание, что это (п - 1) -связаны так, что группы стабилизировать для по теореме Фрейденталя. Эти группы представляют kй конюшня гомотопическая группа сфер.
Следствие 2.
В общем, для фиксированных k ≥ 1, k ≤ 2п для достаточно большого п, так что любой п-связанное пространство Икс будут иметь соответствующие стабилизированные гомотопические группы. Эти группы фактически являются гомотопическими группами объекта, соответствующего Икс в стабильная гомотопическая категория.
Рекомендации
- Фройденталь, Х. (1938), "Über die Klassen der Sphärenabbildungen. I. Große Dimensionen", Compositio Mathematica, 5: 299–314.
- Goerss, P. G .; Жардин, Дж. Ф. (1999), Симплициальная теория гомотопий, Успехи в математике, 174, Базель-Бостон-Берлин: Birkhäuser.
- Хэтчер, Аллен (2002), Алгебраическая топология, Кембридж: Издательство Кембриджского университета, ISBN 0-521-79540-0.
- Уайтхед, Дж. У. (1953), «О теоремах Фрейденталя», Анналы математики, 57 (2): 209–228, Дои:10.2307/1969855, JSTOR 1969855, МИСТЕР 0055683.