H4K8ac - H4K8ac

H4K8ac, представляющий эпигенетический модификация белка упаковки ДНК гистон H4, это знак, обозначающий ацетилирование на 8-м лизин остаток белка гистона H4. Это было связано с распространением малярия.

Номенклатура

H4K8ac указывает на ацетилирование лизин 8 на субъединице белка гистона H4:[1]

Abbr.Смысл
H4Семейство гистонов H4
Kстандартное сокращение для лизина
8положение аминокислотный остаток
(считая от N-конца)
acацетильная группа

Модификации гистонов

Геномная ДНК эукариотический клетки окружены особыми белковыми молекулами, известными как гистоны. Комплексы, образованные петлей ДНК, известны как хроматин. Основной структурной единицей хроматина является нуклеосома: он состоит из основного октамера гистонов (H2A, H2B, H3 и H4), а также линкерного гистона и около 180 пар оснований ДНК. Эти гистоны ядра богаты остатками лизина и аргинина. Карбоксильный (C) конец этих гистонов участвует во взаимодействиях гистонов с гистонами, а также во взаимодействиях гистонов с ДНК. Амино (N) -концевые заряженные хвосты являются местом расположения посттрансляционные модификации, например, тот, что видели в H3K36me3.[2][3]

Гистон H4

Модификации H4 не так хорошо известны, как H3, и H4 имеют меньше вариаций, что может объяснить их важную функцию.[4]

H4K8ac

H4K8ac входит в состав 17 модификаций группы активных промоторов. H4K8ac чаще обнаруживается в активных промоторах и транскрибируемых областях, чем другие метки.[4] H4K8ac модифицируется другой группой ферментов, чем другие лизины H4.[4]

Ацетилирование и деацетилирование лизина

Ацетилирование лизина

Белки обычно ацетилируются на лизин остатков, и эта реакция зависит от ацетил-кофермент А в качестве донора ацетильной группы. В ацетилирование и деацетилирование гистонов, гистоновые белки ацетилируются и деацетилируются по остаткам лизина в N-концевом хвосте как часть генная регуляция. Обычно эти реакции катализируются ферменты с гистонацетилтрансфераза (HAT) или гистоновая деацетилаза (HDAC), хотя HAT и HDAC также могут изменять статус ацетилирования негистоновых белков.[5]

Регуляция факторов транскрипции, эффекторных белков, молекулярные шапероны, а белки цитоскелета за счет ацетилирования и деацетилирования являются важным посттрансляционным регуляторным механизмом.[6] Эти регуляторные механизмы аналогичны фосфорилированию и дефосфорилированию под действием киназы и фосфатазы. Не только состояние ацетилирования белка может изменять его активность, но и эта посттрансляционная модификация может также пересекаться с фосфорилирование, метилирование, убиквитинирование, сумоилирование и другие для динамического контроля клеточной сигнализации.[7][8][9]

Эпигенетические последствия

Посттрансляционная модификация гистоновых хвостов с помощью комплексов модификации гистонов или комплексов ремоделирования хроматина интерпретируется клеткой и приводит к сложному комбинаторному транскрипционному выходу. Считается, что гистоновый код диктует экспрессию генов за счет сложного взаимодействия между гистонами в определенной области.[10] Текущее понимание и интерпретация гистонов происходит из двух крупномасштабных проектов: КОДИРОВАТЬ и эпигеномная дорожная карта.[11] Целью эпигеномного исследования было изучить эпигенетические изменения по всему геному. Это привело к состояниям хроматина, которые определяют области генома путем группирования взаимодействий различных белков и / или модификаций гистонов вместе. Состояния хроматина исследовали в клетках дрозофилы, глядя на место связывания белков в геноме. Использование ChIP-секвенирование выявили участки в геноме, характеризующиеся различной полосатостью.[12] Различные стадии развития были профилированы и у Drosophila, акцент был сделан на релевантности модификации гистонов.[13] Анализ полученных данных привел к определению состояний хроматина на основе модификаций гистонов.[14]

Геном человека был аннотирован состояниями хроматина. Эти аннотированные состояния могут использоваться как новые способы аннотирования генома независимо от базовой последовательности генома. Эта независимость от последовательности ДНК обеспечивает эпигенетический характер модификаций гистонов. Состояние хроматина также полезно для идентификации регуляторных элементов, не имеющих определенной последовательности, таких как энхансеры. Этот дополнительный уровень аннотации позволяет глубже понять регуляцию клеточно-специфических генов.[15]

Методы

Ацетилирование гистоновой метки можно обнаружить разными способами:

1. Последовательность иммунопреципитации хроматина (ChIP-секвенирование ) измеряет степень обогащения ДНК после связывания с целевым белком и иммунопреципитации. Это приводит к хорошей оптимизации и используется in vivo для выявления связывания ДНК с белком, происходящего в клетках. ChIP-Seq можно использовать для идентификации и количественного определения различных фрагментов ДНК для различных модификаций гистонов вдоль геномной области.[16]

2. Секвенирование микрококковой нуклеазы (MNase-seq) используется для исследования областей, которые связаны с хорошо расположенными нуклеосомами. Для определения положения нуклеосом используется фермент микрококковой нуклеазы. Видно, что хорошо расположенные нуклеосомы имеют обогащенные последовательности.[17]

3. Анализ последовательности хроматина, доступного для транспозаз (ATAC-seq), используется для поиска участков, свободных от нуклеосом (открытый хроматин). Использует гиперактивный Транспозон Tn5 чтобы выделить локализацию нуклеосом.[18][19][20]

Клиническое значение

Этот знак был связан с распространенностью малярия.[21]

Смотрите также

Рекомендации

  1. ^ Хуанг, Суминг; Литт, Майкл Д .; Энн Блейки, К. (30 ноября 2015 г.). Экспрессия и регуляция эпигенетических генов. С. 21–38. ISBN  9780127999586.
  2. ^ Рутенбург AJ, Li H, Patel DJ, Allis CD (декабрь 2007 г.). «Многовалентное взаимодействие модификаций хроматина за счет связанных связывающих модулей». Обзоры природы. Молекулярная клеточная биология. 8 (12): 983–94. Дои:10.1038 / nrm2298. ЧВК  4690530. PMID  18037899.
  3. ^ Кузаридес Т. (февраль 2007 г.). «Модификации хроматина и их функции». Клетка. 128 (4): 693–705. Дои:10.1016 / j.cell.2007.02.005. PMID  17320507.
  4. ^ а б c «Обзор Histone H4K8». Получено 14 декабря 2019.
  5. ^ Садоул К., Бойо С., Пабион М., Хочбин С. (2008). «Регулирование белкового обмена ацетилтрансферазами и деацетилазами». Биохимия. 90 (2): 306–12. Дои:10.1016 / j.biochi.2007.06.009. PMID  17681659.
  6. ^ Glozak MA, Sengupta N, Zhang X, Seto E (2005). «Ацетилирование и деацетилирование негистоновых белков». Ген. 363: 15–23. Дои:10.1016 / j.gene.2005.09.010. PMID  16289629.
  7. ^ Ян XJ, Сето Э (2008). «Ацетилирование лизина: кодифицированное перекрестное взаимодействие с другими посттрансляционными модификациями». Мол. Клетка. 31 (4): 449–61. Дои:10.1016 / j.molcel.2008.07.002. ЧВК  2551738. PMID  18722172.
  8. ^ Эдде Б., Денуле П., де Нешо Б., Кулакофф А., Бервальд-Неттер Ю., Грос Ф (1989). «Посттрансляционные модификации тубулина в культивируемых нейронах мозга мышей и астроглии». Биол. Клетка. 65 (2): 109–117. Дои:10.1016 / 0248-4900 (89) 90018-х. PMID  2736326.
  9. ^ Марута Х, Грир К., Розенбаум Дж. Л. (1986). «Ацетилирование альфа-тубулина и его связь со сборкой и разборкой микротрубочек». J. Cell Biol. 103 (2): 571–579. Дои:10.1083 / jcb.103.2.571. ЧВК  2113826. PMID  3733880.
  10. ^ Jenuwein T, Allis CD (август 2001 г.). «Перевод гистонового кода». Наука. 293 (5532): 1074–1080. CiteSeerX  10.1.1.453.900. Дои:10.1126 / science.1063127. PMID  11498575.
  11. ^ Бирни Э, Стаматояннопулос Ж.А., Датта А, Гиго Р., Джингерас Т.Р., Маргулиес Э.Х. и др. (Консорциум проекта ENCODE) (июнь 2007 г.). «Идентификация и анализ функциональных элементов в 1% генома человека в рамках пилотного проекта ENCODE». Природа. 447 (7146): 799–816. Bibcode:2007Натура.447..799Б. Дои:10.1038 / природа05874. ЧВК  2212820. PMID  17571346.
  12. ^ Филион Дж. Дж., Ван Беммель Дж. Дж., Брауншвейг Ю., Талхаут В., Кинд Дж., Уорд Л. Д., Бругман В., де Кастро И. Дж., Керховен Р. М., Бассемейкер Г. Дж., Ван Стенсель Б. (октябрь 2010 г.). «Систематическое картирование расположения белков выявляет пять основных типов хроматина в клетках дрозофилы». Клетка. 143 (2): 212–24. Дои:10.1016 / j.cell.2010.09.009. ЧВК  3119929. PMID  20888037.
  13. ^ Рой С., Эрнст Дж., Харченко П.В., Херадпур П., Негре Н., Итон М.Л. и др. (Консорциум modENCODE) (декабрь 2010 г.). «Идентификация функциональных элементов и регуляторных цепей с помощью Drosophila modENCODE». Наука. 330 (6012): 1787–97. Bibcode:2010Научный ... 330.1787R. Дои:10.1126 / science.1198374. ЧВК  3192495. PMID  21177974.
  14. ^ Харченко П.В., Алексеенко А.А., Шварц Ю.Б., Минода А., Риддл Н.С., Эрнст Дж. И др. (Март 2011 г.). «Комплексный анализ хроматина у Drosophila melanogaster». Природа. 471 (7339): 480–5. Bibcode:2011Натура.471..480K. Дои:10.1038 / природа09725. ЧВК  3109908. PMID  21179089.
  15. ^ Kundaje A, Meuleman W., Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, et al. (Консорциум Roadmap Epigenomics) (февраль 2015 г.). «Интегративный анализ 111 эталонных эпигеномов человека». Природа. 518 (7539): 317–30. Bibcode:2015Натура.518..317.. Дои:10.1038 / природа14248. ЧВК  4530010. PMID  25693563.
  16. ^ «IP-секвенирование всего генома хроматина (ChIP-Seq)» (PDF). Иллюмина. Получено 23 октября 2019.
  17. ^ «MAINE-Seq / Mnase-Seq». иллюмина. Получено 23 октября 2019.
  18. ^ Буэнростро, Джейсон Д .; Ву, Пекин; Chang, Howard Y .; Гринлиф, Уильям Дж. (2015). «ATAC-seq: метод определения доступности хроматина для всего генома». Текущие протоколы в молекулярной биологии. 109: 21.29.1–21.29.9. Дои:10.1002 / 0471142727.mb2129s109. ISBN  9780471142720. ЧВК  4374986. PMID  25559105.
  19. ^ Schep, Alicia N .; Буэнростро, Джейсон Д .; Денни, Сара К .; Шварц, Катя; Шерлок, Гэвин; Гринлиф, Уильям Дж. (2015). «Структурированные отпечатки пальцев нуклеосом позволяют с высоким разрешением картировать архитектуру хроматина в регуляторных областях». Геномные исследования. 25 (11): 1757–1770. Дои:10.1101 / гр.192294.115. ISSN  1088-9051. ЧВК  4617971. PMID  26314830.
  20. ^ Песня, Л .; Кроуфорд, Г. Э. (2010). «DNase-seq: метод высокого разрешения для картирования активных регуляторных элементов генов в геноме из клеток млекопитающих». Протоколы Колд-Спринг-Харбор. 2010 (2): pdb.prot5384. Дои:10.1101 / pdb.prot5384. ISSN  1559-6095. ЧВК  3627383. PMID  20150147.
  21. ^ Gupta, Archana P .; Чжу, Лэй; Трипати, Джайшри; Кухарский, Михал; Патра, Алок; Боздек, Збынек (2017). «Ацетилирование гистона 4 по лизину 8 регулирует пролиферацию и взаимодействие хозяин-патоген у Plasmodium falciparum». Эпигенетика и хроматин. 10 (1): 40. Дои:10.1186 / s13072-017-0147-z. ЧВК  5568195. PMID  28830512.