Шестиугольная черепица-треугольная черепица сотовая - Hexagonal tiling-triangular tiling honeycomb
Шестиугольная черепица-треугольная черепица сотовая | |
---|---|
Тип | Паракомпактные однородные соты |
Символ Шлефли | {(3,6,3,6)} или {(6,3,6,3)} |
Диаграммы Кокстера | или же или же или же |
Клетки | {3,6} {6,3} г {6,3} |
Лица | треугольный {3} квадрат {4} шестиугольник {6} |
Фигура вершины | ромбитогексагональная черепица |
Группа Коксетера | [(6,3)[2]] |
Характеристики | Равномерный по вершинам, однородный по краям |
в геометрия из гиперболическое 3-пространство, то шестиугольная черепица-треугольная черепица сотовая это паракомпактные однородные соты, построенный из треугольная черепица, шестиугольная черепица, и трехгексагональная черепица клетки, в ромбитогексагональная черепица вершина фигуры. Он имеет однокольцевую диаграмму Кокстера, , и назван по двум своим обычным ячейкам.
А геометрические соты это заполнение пространства из многогранник или многомерный клетки, чтобы не было зазоров. Это пример более общего математического черепица или же мозаика в любом количестве измерений.
Соты обычно строятся из обычных Евклидово ("плоское") пространство, как и выпуклые однородные соты. Они также могут быть построены в неевклидовы пространства, Такие как гиперболические однородные соты. Любой конечный равномерный многогранник можно спроецировать на его окружающая сфера образовывать однородные соты в сферическом пространстве.
Симметрия
Форма с более низкой симметрией, индекс 6, этой соты может быть построена с помощью [(6,3,6,3*)] симметрия, представленная куб фундаментальный домен и октаэдрический Диаграмма Кокстера .
Связанные соты
В циклоусеченные октаэдрические-шестиугольные мозаичные соты, имеет более высокую конструкцию симметрии, поскольку гексагональная черепица порядка 4.
Смотрите также
Рекомендации
- Coxeter, Правильные многогранники, 3-й. изд., Dover Publications, 1973. ISBN 0-486-61480-8. (Таблицы I и II: Правильные многогранники и соты, стр. 294–296)
- Coxeter, Красота геометрии: двенадцать эссе, Dover Publications, 1999 г. ISBN 0-486-40919-8 (Глава 10: Обычные соты в гиперболическом пространстве, Сводные таблицы II, III, IV, V, стр. 212-213)
- Джеффри Р. Уикс Форма космоса, 2-е издание ISBN 0-8247-0709-5 (Глава 16-17: Геометрии на трехмерных многообразиях I, II)
- Норман Джонсон Равномерные многогранники, Рукопись
- N.W. Джонсон: Теория однородных многогранников и сот, Кандидат наук. Диссертация, Университет Торонто, 1966 г.
- N.W. Джонсон: Геометрии и преобразования, (2018) Глава 13: Гиперболические группы Кокстера