В статистика, Теорема Кохрана, разработанный Уильям Дж. Кокран,[1] это теорема используется для обоснования результатов, относящихся к распределения вероятностей статистики, которая используется в дисперсионный анализ.[2]
Заявление
Предполагать U1, ..., UN i.i.d. стандарт нормально распределенный случайные переменные, и существуют положительно полуопределенные матрицы
, с
. Далее предположим, что
, куда ря это классифицировать из
. Если мы напишем

таким образом Qя находятся квадратичные формы, тогда Теорема Кохрана заявляет, что Qя находятся независимый, и каждый Qя имеет распределение хи-квадрат с ря степени свободы.[1]
Менее формально это количество линейных комбинаций, включенных в сумму квадратов, определяющих Qя, при условии, что эти линейные комбинации линейно независимы.
Доказательство
Сначала покажем, что матрицы B(я) возможно одновременно диагонализованный и что их ненулевые собственные значения все равны +1. Затем мы используем векторный базис которые диагонализируют их, чтобы упростить их характеристическая функция и показать свою независимость и распространение.[3]
Каждая из матриц B(я) имеет классифицировать ря и поэтому ря ненулевой собственные значения. Для каждого я, сумма
имеет самый высокий ранг
. С
, следует, что C(я) имеет ровно звание N − ря.
Следовательно B(я) и C(я) возможно одновременно диагонализованный. Это можно показать, сначала диагонализируя B(я). В этой основе он имеет вид:

Таким образом, нижний
строки равны нулю. С
, следует, что эти строки в C(я) в этой базе содержится правый блок, который является
единичная матрица с нулями в остальных строках. Но с тех пор C(я) имеет звание N − ря, в другом месте он должен быть равен нулю. Таким образом, диагональна и в этом базисе. Отсюда следует, что все ненулевые собственные значения обоих B(я) и C(я) +1. Более того, приведенный выше анализ можно повторить в диагональном базисе для
. В этой основе
это личность
векторное пространство, поэтому оба B(2) и
одновременно диагонализируемы в этом векторном пространстве (а значит, и вместе с B(1)). По итерации следует, что все B-s одновременно диагонализуемы.
Таким образом, существует ортогональная матрица
такой, что для всех
,
диагональная, где любая запись
с индексами
,
, равно 1, а любая запись с другими индексами равна 0.
Позволять
обозначают определенную линейную комбинацию всех
после преобразования
. Обратите внимание, что
за счет сохранения длины ортогональная матрица S, что якобиан линейного преобразования - это матрица, связанная с самим линейным преобразованием, и что определитель ортогональной матрицы имеет модуль 1.
Характеристическая функция Qя является:

Это преобразование Фурье из распределение хи-квадрат с ря степени свободы. Следовательно, это распределение Qя.
Более того, характеристическая функция совместного распределения всех Qяs это:

Из этого следует, что все Qяs независимы.
Примеры
Среднее значение выборки и дисперсия выборки
Если Икс1, ..., Иксп независимые нормально распределенные случайные величины со средним μ и стандартное отклонение σ тогда

является стандартный нормальный для каждого я. Обратите внимание, что общая Q равно сумме квадратов Us, как показано здесь:

что вытекает из исходного предположения, что
.Поэтому вместо этого мы рассчитаем это количество и позже разделим его на Qяс. Можно написать

(здесь
это выборочное среднее ). Чтобы увидеть эту идентичность, умножьте все на
и обратите внимание, что

и развернуть, чтобы дать

Третий член равен нулю, потому что он равен константе, умноженной на

а второй срок только что п идентичные термины сложены вместе. Таким образом

и поэтому

Сейчас же
с
то матрица единиц который имеет ранг 1. В свою очередь
при условии
. Это выражение также можно получить, разложив
в матричной записи. Можно показать, что ранг
является
поскольку сложение всех его строк равно нулю. Таким образом, условия теоремы Кохрана выполнены.
Затем теорема Кохрана утверждает, что Q1 и Q2 независимы, с распределениями хи-квадрат с п - 1 и 1 степень свободы соответственно. Это показывает, что выборочное среднее и выборочная дисперсия независимы. Это также может быть показано Теорема Басу, а собственно это свойство характеризует нормальное распределение - ни для каких других распределений среднее значение выборки и дисперсия выборки не зависят.[4]
Распределения
Результат для распределений символически записывается как


Обе эти случайные величины пропорциональны истинной, но неизвестной дисперсии. σ2. Таким образом, их соотношение не зависит от σ2 и потому, что они статистически независимы. Распределение их отношения дается формулой

куда F1,п − 1 это F-распределение с 1 и п - 1 степень свободы (см. Также Распределение Стьюдента ). Последним шагом здесь является определение случайной величины, имеющей F-распределение.
Оценка дисперсии
Чтобы оценить дисперсию σ2, иногда используется оценка максимальная вероятность оценка дисперсии нормального распределения

Теорема Кохрана показывает, что

а свойства распределения хи-квадрат показывают, что

Альтернативная формулировка
Следующая версия часто встречается при рассмотрении линейной регрессии.[5] Предположим, что
это стандарт многомерный нормальный случайный вектор (здесь
обозначает п-к-п единичная матрица ), и если
все п-к-п симметричные матрицы с
. Затем при определении
, любое из следующих условий влечет за собой два других:

(Таким образом
находятся положительно полуопределенный )
не зависит от
за 
Смотрите также
| Эта статья нужны дополнительные цитаты для проверка. Пожалуйста помоги улучшить эту статью к добавление цитат в надежные источники. Материал, не полученный от источника, может быть оспорен и удален Найдите источники: "Теорема Кохрана" – Новости · газеты · книги · ученый · JSTOR (Июль 2011 г.) (Узнайте, как и когда удалить этот шаблон сообщения) |
Рекомендации