Кантическая восьмиугольная черепица - Cantic octagonal tiling
Кантическая восьмиугольная черепица | |
---|---|
Модель диска Пуанкаре из гиперболическая плоскость | |
Тип | Гиперболическая равномерная мозаика |
Конфигурация вершины | 3.6.4.6 |
Символ Шлефли | час2{8,3} |
Символ Wythoff | 4 3 | 3 |
Диаграмма Кокстера | = |
Группа симметрии | [(4,3,3)], (*433) |
Двойной | Заказ-4-3-3 т12 двойная черепица |
Характеристики | Вершинно-транзитивный |
В геометрия, то трехугольная мозаика или же щитотриттрагональная черепица это униформа облицовка гиперболическая плоскость. Она имеет Символ Шлефли т1,2(4,3,3). Его также можно назвать кантик восьмиугольная черепица, ч2{8,3}.
Двойная черепица
Связанные многогранники и мозаика
Равномерные (4,3,3) мозаики | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Симметрия: [(4,3,3)], (*433) | [(4,3,3)]+, (433) | ||||||||||
ч {8,3} т0(4,3,3) | г {3,8}1/2 т0,1(4,3,3) | ч {8,3} т1(4,3,3) | час2{8,3} т1,2(4,3,3) | {3,8}1/2 т2(4,3,3) | час2{8,3} т0,2(4,3,3) | т {3,8}1/2 т0,1,2(4,3,3) | с {3,8}1/2 с (4,3,3) | ||||
Униформа двойников | |||||||||||
V (3,4)3 | V3.8.3.8 | V (3,4)3 | V3.6.4.6 | В (3,3)4 | V3.6.4.6 | V6.6.8 | V3.3.3.3.3.4 |
Симметрия * n32 [1+, 2н, 3] = [(n, 3,3)] | Сферический | Евклидово | Компактный гиперболический | Паракомпакт | ||
---|---|---|---|---|---|---|
*233 [1+,4,3] = [3,3] | *333 [1+,6,3] = [(3,3,3)] | *433 [1+,8,3] = [(4,3,3)] | *533 [1+,10,3] = [(5,3,3)] | *633... [1+,12,3] = [(6,3,3)] | *∞33 [1+,∞,3] = [(∞,3,3)] | |
Coxeter Schläfli | = час2{4,3} | = час2{6,3} | = час2{8,3} | = час2{10,3} | = час2{12,3} | = час2{∞,3} |
Кантик фигура | ||||||
Вершина | 3.6.2.6 | 3.6.3.6 | 3.6.4.6 | 3.6.5.6 | 3.6.6.6 | 3.6.∞.6 |
Домен | ||||||
Wythoff | 2 3 | 3 | 3 3 | 3 | 4 3 | 3 | 5 3 | 3 | 6 3 | 3 | ∞ 3 | 3 |
Двойной фигура | ||||||
Лицо | V3.6.2.6 | V3.6.3.6 | V3.6.4.6 | V3.6.5.6 | V3.6.6.6 | V3.6.∞.6 |
Рекомендации
- Джон Х. Конвей, Хайди Берджель, Хаим Гудман-Штрасс, Симметрии вещей 2008, ISBN 978-1-56881-220-5 (Глава 19, Гиперболические архимедовы мозаики)
- «Глава 10: Обычные соты в гиперболическом пространстве». Красота геометрии: двенадцать эссе. Dover Publications. 1999 г. ISBN 0-486-40919-8. LCCN 99035678.
Смотрите также
внешняя ссылка
- Вайсштейн, Эрик В. «Гиперболическая мозаика». MathWorld.
- Вайсштейн, Эрик В. «Гиперболический диск Пуанкаре». MathWorld.
- Галерея гиперболических и сферических плиток
- KaleidoTile 3: обучающая программа для создания сферических, плоских и гиперболических мозаик
- Гиперболические плоские мозаики, Дон Хэтч
Этот связанный с геометрией статья - это заглушка. Вы можете помочь Википедии расширяя это. |