Плоская трехугольная черепица - Snub trioctagonal tiling
Плоская трехугольная черепица | |
---|---|
Модель диска Пуанкаре из гиперболическая плоскость | |
Тип | Гиперболическая равномерная мозаика |
Конфигурация вершины | 3.3.3.3.8 |
Символ Шлефли | sr {8,3} или |
Символ Wythoff | | 8 3 2 |
Диаграмма Кокстера | или же или же |
Группа симметрии | [8,3]+, (832) |
Двойной | Пятиугольная черепица Заказ-8-3 цветочек |
Характеристики | Вершинно-транзитивный Хиральный |
В геометрия, то Плоская восьмиугольная черепица порядка 3 является полуправильным замощением гиперболической плоскости. Есть четыре треугольники, один восьмиугольник на каждой вершина. Она имеет Символ Шлефли из ср {8,3}.
Изображений
Нарисовано хиральными парами с отсутствующими краями между черными треугольниками:
Связанные многогранники и мозаики
Этот полурегулярный тайлинг является членом последовательности пренебрежительно многогранники и мозаики с вершинной фигурой (3.3.3.3.п) и Диаграмма Кокстера – Дынкина . Эти фигуры и их двойники имеют (n32) вращательные симметрия, находясь в евклидовой плоскости для n = 6 и гиперболической плоскости для любого большего n. Можно считать, что серия начинается с n = 2, причем один набор граней вырождается в дигоны.
п32 мутации симметрии курносых плиток: 3.3.3.3.n | ||||||||
---|---|---|---|---|---|---|---|---|
Симметрия п32 | Сферический | Евклидово | Компактный гиперболический | Paracomp. | ||||
232 | 332 | 432 | 532 | 632 | 732 | 832 | ∞32 | |
Курносый цифры | ||||||||
Конфиг. | 3.3.3.3.2 | 3.3.3.3.3 | 3.3.3.3.4 | 3.3.3.3.5 | 3.3.3.3.6 | 3.3.3.3.7 | 3.3.3.3.8 | 3.3.3.3.∞ |
Гироскоп цифры | ||||||||
Конфиг. | V3.3.3.3.2 | V3.3.3.3.3 | V3.3.3.3.4 | V3.3.3.3.5 | V3.3.3.3.6 | V3.3.3.3.7 | V3.3.3.3.8 | V3.3.3.3.∞ |
Из Строительство Wythoff есть десять гиперболических однородные мозаики который может быть основан на правильной восьмиугольной мозаике.
Нарисовывая плитки красного цвета на исходных гранях, желтого цвета в исходных вершинах и синего цвета вдоль исходных краев, получается 10 форм.
Равномерная восьмиугольная / треугольная мозаика | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Симметрия: [8,3], (*832) | [8,3]+ (832) | [1+,8,3] (*443) | [8,3+] (3*4) | ||||||||||
{8,3} | т {8,3} | г {8,3} | т {3,8} | {3,8} | рр {8,3} s2{3,8} | tr {8,3} | ср {8,3} | ч {8,3} | час2{8,3} | с {3,8} | |||
или же | или же | ||||||||||||
Униформа двойников | |||||||||||||
V83 | V3.16.16 | V3.8.3.8 | V6.6.8 | V38 | V3.4.8.4 | V4.6.16 | V34.8 | V (3,4)3 | V8.6.6 | V35.4 | |||
Рекомендации
- Джон Х. Конвей, Хайди Берджель, Хаим Гудман-Штрасс, Симметрии вещей 2008, ISBN 978-1-56881-220-5 (Глава 19, Гиперболические архимедовы мозаики)
- «Глава 10: Обычные соты в гиперболическом пространстве». Красота геометрии: двенадцать эссе. Dover Publications. 1999 г. ISBN 0-486-40919-8. LCCN 99035678.
Смотрите также
- Плоская шестиугольная черепица
- Орден-3 семиугольная черепица
- Замощения правильных многоугольников
- Список однородных плоских мозаик
- Решетка Кагоме