Псевдопросто Ферма - Fermat pseudoprime

В теория чисел, то Псевдопремы Ферма составляют самый важный класс псевдопремы которые исходят от Маленькая теорема Ферма.

Определение

Маленькая теорема Ферма заявляет, что если п прост и а является совмещать к п, тогда ап−1 - 1 это делимый от п. Для целого числа а > 1, если составное целое число Икс разделяет аИкс−1 - 1, то Икс называется Псевдопросто Ферма основать а.[1]:Def. 3,32Другими словами, составное целое число является псевдопервичным числом Ферма для основания а если он успешно пройдет Тест на простоту Ферма для базы а.[2] Ложное утверждение о том, что все числа, прошедшие тест на простоту Ферма по основанию 2, простые, называется Китайская гипотеза.

Наименьшее псевдопростое число Ферма по основанию 2 равно 341. Это не простое число, поскольку оно равно 11 · 31, но удовлетворяет малой теореме Ферма: 2340 ≡ 1 (мод. 341) и, таким образом, проходитТест на простоту Ферма для базы 2.

Псевдопримеры по основанию 2 иногда называют Числа Сарруса, после П. Ф. Саррус кто обнаружил, что 341 обладает этим свойством, Номера пулетов, после П. Пуле кто составил таблицу таких чисел, или Ферматинцы (последовательность A001567 в OEIS ).

Псевдопростое число Ферма часто называют псевдопремия, с модификатором Ферма быть понятым.

Целое число Икс это псевдопростое число Ферма для всех значений а которые взаимно просты с Икс называется Число Кармайкла.[2][1]:Def. 3,34

Свойства

Распределение

Для любой данной базы существует бесконечно много псевдопричин. а > 1. В 1904 году Чиполла показал, как создавать бесконечное количество псевдопреступников. а > 1: Пусть п быть простым числом, которое не делит а(а2 - 1). Позволять А = (ап - 1)/(а - 1) и пусть B = (ап + 1)/(а + 1). потом п = AB является составным и является псевдопервичным основанием а.[3] Например, если а = 2 и п = 5, тогда А = 31, B = 11 и п = 341 - псевдопростое число по основанию 2.

На самом деле их бесконечно много сильные псевдопреступности к любой базе больше 1 (см. теорему 1[4]) и бесконечно много чисел Кармайкла,[5] но они сравнительно редки. Есть три псевдопростых числа для основания 2 меньше 1000, 245 меньше одного миллиона и 21853 меньше 25 · 10.9. Имеется 4842 сильных псевдопростых числа с основанием 2 и 2163 числа Кармайкла ниже этого предела (см. Таблицу 1 [4]).

Начиная с 17 · 257, произведение последовательных чисел Ферма представляет собой псевдопростое число по основанию 2, как и все Композит Ферма и Композит Мерсенна.

Факторизации

Факторизации 60 чисел Пуле до 60787, включая 13 чисел Кармайкла (выделены жирным шрифтом), приведены в следующей таблице.

(последовательность A001567 в OEIS )

Пулет от 1 до 15
34111 · 31
5613 · 11 · 17
6453 · 5 · 43
11055 · 13 · 17
138719 · 73
17297 · 13 · 19
19053 · 5 · 127
204723 · 89
24655 · 17 · 29
270137 · 73
28217 · 13 · 31
327729 · 113
403337 · 109
436917 · 257
43713 · 31 · 47
Пулет от 16 до 30
468131 · 151
546143 · 127
66017 · 23 · 41
795773 · 109
832153 · 157
84813 · 11 · 257
89117 · 19 · 67
1026131 · 331
105855 · 29 · 73
113055 · 7 · 17 · 19
128013 · 17 · 251
137417 · 13 · 151
1374759 · 233
1398111 · 31 · 41
1449143 · 337
Пулет 31–45
1570923 · 683
158417 · 31 · 73
167055 · 13 · 257
187053 · 5 · 29 · 43
1872197 · 193
1995171 · 281
230013 · 11 · 17 · 41
2337797 · 241
257613 · 31 · 277
2934113 · 37 · 61
301217 · 13 · 331
3088917 · 23 · 79
3141789 · 353
3160973 · 433
31621103 · 307
Пулет 46 на 60
331533 · 43 · 257
349455 · 29 · 241
3533389 · 397
398655 · 7 · 17 · 67
410417 · 11 · 13 · 41
416655 · 13 · 641
42799127 · 337
4665713 · 37 · 97
49141157 · 313
49981151 · 331
526337 · 73 · 103
552453 · 5 · 29 · 127
574217 · 13 · 631
60701101 · 601
6078789 · 683

Число Пуле, все делители которого d разделить 2d - 2 называется число супер-Пуле. Существует бесконечно много чисел Пуле, которые не являются числами суперпуле.[6]

Наименьшие псевдопримеры Ферма

Наименьшее псевдопростое число для каждой базы а ≤ 200 приведено в следующей таблице; цвета отмечают количество простых множителей. В отличие от определения в начале статьи, псевдопределы ниже а исключены в таблице. (Для этого разрешить псевдопреступности ниже а, увидеть OEISA090086)

(последовательность A007535 в OEIS )

анаименьший п-панаименьший п-панаименьший п-панаименьший п-п
14 = 2²5165 = 5 · 13101175 = 5² · 7151175 = 5² · 7
2341 = 11 · 315285 = 5 · 17102133 = 7 · 19152153 = 3² · 17
391 = 7 · 135365 = 5 · 13103133 = 7 · 19153209 = 11 · 19
415 = 3 · 55455 = 5 · 11104105 = 3 · 5 · 7154155 = 5 · 31
5124 = 2² · 315563 = 3² · 7105451 = 11 · 41155231 = 3 · 7 · 11
635 = 5 · 75657 = 3 · 19106133 = 7 · 19156217 = 7 · 31
725 = 5²5765 = 5 · 13107133 = 7 · 19157186 = 2 · 3 · 31
89 = 3²58133 = 7 · 19108341 = 11 · 31158159 = 3 · 53
928 = 2² · 75987 = 3 · 29109117 = 3² · 13159247 = 13 · 19
1033 = 3 · 1160341 = 11 · 31110111 = 3 · 37160161 = 7 · 23
1115 = 3 · 56191 = 7 · 13111190 = 2 · 5 · 19161190 = 2 · 5 · 19
1265 = 5 · 136263 = 3² · 7112121 = 11²162481 = 13 · 37
1321 = 3 · 763341 = 11 · 31113133 = 7 · 19163186 = 2 · 3 · 31
1415 = 3 · 56465 = 5 · 13114115 = 5 · 23164165 = 3 · 5 · 11
15341 = 11 · 3165112 = 2⁴ · 7115133 = 7 · 19165172 = 2² · 43
1651 = 3 · 176691 = 7 · 13116117 = 3² · 13166301 = 7 · 43
1745 = 3² · 56785 = 5 · 17117145 = 5 · 29167231 = 3 · 7 · 11
1825 = 5²6869 = 3 · 23118119 = 7 · 17168169 = 13²
1945 = 3² · 56985 = 5 · 17119177 = 3 · 59169231 = 3 · 7 · 11
2021 = 3 · 770169 = 13²120121 = 11²170171 = 3² · 19
2155 = 5 · 1171105 = 3 · 5 · 7121133 = 7 · 19171215 = 5 · 43
2269 = 3 · 237285 = 5 · 17122123 = 3 · 41172247 = 13 · 19
2333 = 3 · 1173111 = 3 · 37123217 = 7 · 31173205 = 5 · 41
2425 = 5²7475 = 3 · 5²124125 = 5³174175 = 5² · 7
2528 = 2² · 77591 = 7 · 13125133 = 7 · 19175319 = 11 · 19
2627 = 3³7677 = 7 · 11126247 = 13 · 19176177 = 3 · 59
2765 = 5 · 1377247 = 13 · 19127153 = 3² · 17177196 = 2² · 7²
2845 = 3² · 578341 = 11 · 31128129 = 3 · 43178247 = 13 · 19
2935 = 5 · 77991 = 7 · 13129217 = 7 · 31179185 = 5 · 37
3049 = 7²8081 = 3⁴130217 = 7 · 31180217 = 7 · 31
3149 = 7²8185 = 5 · 17131143 = 11 · 13181195 = 3 · 5 · 13
3233 = 3 · 118291 = 7 · 13132133 = 7 · 19182183 = 3 · 61
3385 = 5 · 1783105 = 3 · 5 · 7133145 = 5 · 29183221 = 13 · 17
3435 = 5 · 78485 = 5 · 17134135 = 3³ · 5184185 = 5 · 37
3551 = 3 · 1785129 = 3 · 43135221 = 13 · 17185217 = 7 · 31
3691 = 7 · 138687 = 3 · 29136265 = 5 · 53186187 = 11 · 17
3745 = 3² · 58791 = 7 · 13137148 = 2² · 37187217 = 7 · 31
3839 = 3 · 138891 = 7 · 13138259 = 7 · 37188189 = 3³ · 7
3995 = 5 · 198999 = 3² · 11139161 = 7 · 23189235 = 5 · 47
4091 = 7 · 139091 = 7 · 13140141 = 3 · 47190231 = 3 · 7 · 11
41105 = 3 · 5 · 791115 = 5 · 23141355 = 5 · 71191217 = 7 · 31
42205 = 5 · 419293 = 3 · 31142143 = 11 · 13192217 = 7 · 31
4377 = 7 · 1193301 = 7 · 43143213 = 3 · 71193276 = 2² · 3 · 23
4445 = 3² · 59495 = 5 · 19144145 = 5 · 29194195 = 3 · 5 · 13
4576 = 2² · 1995141 = 3 · 47145153 = 3² · 17195259 = 7 · 37
46133 = 7 · 1996133 = 7 · 19146147 = 3 · 7²196205 = 5 · 41
4765 = 5 · 1397105 = 3 · 5 · 7147169 = 13²197231 = 3 · 7 · 11
4849 = 7²9899 = 3² · 11148231 = 3 · 7 · 11198247 = 13 · 19
4966 = 2 · 3 · 1199145 = 5 · 29149175 = 5² · 7199225 = 3² · 5²
5051 = 3 · 17100153 = 3² · 17150169 = 13²200201 = 3 · 67

Список псевдопримеров Ферма в фиксированной базе п

пПервые несколько псевдопримеров Ферма в базе пOEIS последовательность
14, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, .. . (Все композиты)A002808
2341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, ...A001567
391, 121, 286, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, ...A005935
415, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131, 9211, 9605, 9919, ...A020136
54, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7813, 8029, 8911, 9881, ...A005936
635, 185, 217, 301, 481, 1105, 1111, 1261, 1333, 1729, 2465, 2701, 2821, 3421, 3565, 3589, 3913, 4123, 4495, 5713, 6533, 6601, 8029, 8365, 8911, 9331, 9881, ...A005937
76, 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, 4825, 6697, 8321, ...A005938
89, 21, 45, 63, 65, 105, 117, 133, 153, 231, 273, 341, 481, 511, 561, 585, 645, 651, 861, 949, 1001, 1105, 1281, 1365, 1387, 1417, 1541, 1649, 1661, 1729, 1785, 1905, 2047, 2169, 2465, 2501, 2701, 2821, 3145, 3171, 3201, 3277, 3605, 3641, 4005, 4033, 4097, 4369, 4371, 4641, 4681, 4921, 5461, 5565, 5963, 6305, 6533, 6601, 6951, 7107, 7161, 7957, 8321, 8481, 8911, 9265, 9709, 9773, 9881, 9945, ...A020137
94, 8, 28, 52, 91, 121, 205, 286, 364, 511, 532, 616, 671, 697, 703, 946, 949, 1036, 1105, 1288, 1387, 1541, 1729, 1891, 2465, 2501, 2665, 2701, 2806, 2821, 2926, 3052, 3281, 3367, 3751, 4376, 4636, 4961, 5356, 5551, 6364, 6601, 6643, 7081, 7381, 7913, 8401, 8695, 8744, 8866, 8911, ...A020138
109, 33, 91, 99, 259, 451, 481, 561, 657, 703, 909, 1233, 1729, 2409, 2821, 2981, 3333, 3367, 4141, 4187, 4521, 5461, 6533, 6541, 6601, 7107, 7471, 7777, 8149, 8401, 8911, ...A005939
1110, 15, 70, 133, 190, 259, 305, 481, 645, 703, 793, 1105, 1330, 1729, 2047, 2257, 2465, 2821, 4577, 4921, 5041, 5185, 6601, 7869, 8113, 8170, 8695, 8911, 9730, ...A020139
1265, 91, 133, 143, 145, 247, 377, 385, 703, 1045, 1099, 1105, 1649, 1729, 1885, 1891, 2041, 2233, 2465, 2701, 2821, 2983, 3367, 3553, 5005, 5365, 5551, 5785, 6061, 6305, 6601, 8911, 9073, ...A020140
134, 6, 12, 21, 85, 105, 231, 244, 276, 357, 427, 561, 1099, 1785, 1891, 2465, 2806, 3605, 5028, 5149, 5185, 5565, 6601, 7107, 8841, 8911, 9577, 9637, ...A020141
1415, 39, 65, 195, 481, 561, 781, 793, 841, 985, 1105, 1111, 1541, 1891, 2257, 2465, 2561, 2665, 2743, 3277, 5185, 5713, 6501, 6533, 6541, 7107, 7171, 7449, 7543, 7585, 8321, 9073, ...A020142
1514, 341, 742, 946, 1477, 1541, 1687, 1729, 1891, 1921, 2821, 3133, 3277, 4187, 6541, 6601, 7471, 8701, 8911, 9073, ...A020143
1615, 51, 85, 91, 255, 341, 435, 451, 561, 595, 645, 703, 1105, 1247, 1261, 1271, 1285, 1387, 1581, 1687, 1695, 1729, 1891, 1905, 2047, 2071, 2091, 2431, 2465, 2701, 2821, 3133, 3277, 3367, 3655, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5083, 5151, 5461, 5551, 6601, 6643, 7471, 7735, 7957, 8119, 8227, 8245, 8321, 8481, 8695, 8749, 8911, 9061, 9131, 9211, 9605, 9919, ...A020144
174, 8, 9, 16, 45, 91, 145, 261, 781, 1111, 1228, 1305, 1729, 1885, 2149, 2821, 3991, 4005, 4033, 4187, 4912, 5365, 5662, 5833, 6601, 6697, 7171, 8481, 8911, ...A020145
1825, 49, 65, 85, 133, 221, 323, 325, 343, 425, 451, 637, 931, 1105, 1225, 1369, 1387, 1649, 1729, 1921, 2149, 2465, 2701, 2821, 2825, 2977, 3325, 4165, 4577, 4753, 5525, 5725, 5833, 5941, 6305, 6517, 6601, 7345, 8911, 9061, ...A020146
196, 9, 15, 18, 45, 49, 153, 169, 343, 561, 637, 889, 905, 906, 1035, 1105, 1629, 1661, 1849, 1891, 2353, 2465, 2701, 2821, 2955, 3201, 4033, 4681, 5461, 5466, 5713, 6223, 6541, 6601, 6697, 7957, 8145, 8281, 8401, 8869, 9211, 9997, ...A020147
2021, 57, 133, 231, 399, 561, 671, 861, 889, 1281, 1653, 1729, 1891, 2059, 2413, 2501, 2761, 2821, 2947, 3059, 3201, 4047, 5271, 5461, 5473, 5713, 5833, 6601, 6817, 7999, 8421, 8911, ...A020148
214, 10, 20, 55, 65, 85, 221, 703, 793, 1045, 1105, 1852, 2035, 2465, 3781, 4630, 5185, 5473, 5995, 6541, 7363, 8695, 8965, 9061, ...A020149
2221, 69, 91, 105, 161, 169, 345, 483, 485, 645, 805, 1105, 1183, 1247, 1261, 1541, 1649, 1729, 1891, 2037, 2041, 2047, 2413, 2465, 2737, 2821, 3241, 3605, 3801, 5551, 5565, 5963, 6019, 6601, 6693, 7081, 7107, 7267, 7665, 8119, 8365, 8421, 8911, 9453, ...A020150
2322, 33, 91, 154, 165, 169, 265, 341, 385, 451, 481, 553, 561, 638, 946, 1027, 1045, 1065, 1105, 1183, 1271, 1729, 1738, 1749, 2059, 2321, 2465, 2501, 2701, 2821, 2926, 3097, 3445, 4033, 4081, 4345, 4371, 4681, 5005, 5149, 6253, 6369, 6533, 6541, 7189, 7267, 7957, 8321, 8365, 8651, 8745, 8911, 8965, 9805, ...A020151
2425, 115, 175, 325, 553, 575, 805, 949, 1105, 1541, 1729, 1771, 1825, 1975, 2413, 2425, 2465, 2701, 2737, 2821, 2885, 3781, 4207, 4537, 6601, 6931, 6943, 7081, 7189, 7471, 7501, 7813, 8725, 8911, 9085, 9361, 9809, ...A020152
254, 6, 8, 12, 24, 28, 39, 66, 91, 124, 217, 232, 276, 403, 426, 451, 532, 561, 616, 703, 781, 804, 868, 946, 1128, 1288, 1541, 1729, 1891, 2047, 2701, 2806, 2821, 2911, 2926, 3052, 3126, 3367, 3592, 3976, 4069, 4123, 4207, 4564, 4636, 4686, 5321, 5461, 5551, 5611, 5662, 5731, 5963, 6601, 7449, 7588, 7813, 8029, 8646, 8911, 9881, 9976, ...A020153
269, 15, 25, 27, 45, 75, 133, 135, 153, 175, 217, 225, 259, 425, 475, 561, 589, 675, 703, 775, 925, 1035, 1065, 1147, 2465, 3145, 3325, 3385, 3565, 3825, 4123, 4525, 4741, 4921, 5041, 5425, 6093, 6475, 6525, 6601, 6697, 8029, 8695, 8911, 9073, ...A020154
2726, 65, 91, 121, 133, 247, 259, 286, 341, 365, 481, 671, 703, 949, 1001, 1105, 1541, 1649, 1729, 1891, 2071, 2465, 2665, 2701, 2821, 2981, 2993, 3146, 3281, 3367, 3605, 3751, 4033, 4745, 4921, 4961, 5299, 5461, 5551, 5611, 5621, 6305, 6533, 6601, 7381, 7585, 7957, 8227, 8321, 8401, 8911, 9139, 9709, 9809, 9841, 9881, 9919, ...A020155
289, 27, 45, 87, 145, 261, 361, 529, 561, 703, 783, 785, 1105, 1305, 1413, 1431, 1885, 2041, 2413, 2465, 2871, 3201, 3277, 4553, 4699, 5149, 5181, 5365, 7065, 8149, 8321, 8401, 9841, ...A020156
294, 14, 15, 21, 28, 35, 52, 91, 105, 231, 268, 341, 364, 469, 481, 561, 651, 793, 871, 1105, 1729, 1876, 1897, 2105, 2257, 2821, 3484, 3523, 4069, 4371, 4411, 5149, 5185, 5356, 5473, 5565, 5611, 6097, 6601, 7161, 7294, 8321, 8401, 8421, 8841, 8911, ...A020157
3049, 91, 133, 217, 247, 341, 403, 469, 493, 589, 637, 703, 871, 899, 901, 931, 1273, 1519, 1537, 1729, 2059, 2077, 2821, 3097, 3277, 3283, 3367, 3577, 4081, 4097, 4123, 5729, 6031, 6061, 6097, 6409, 6601, 6817, 7657, 8023, 8029, 8401, 8911, 9881, ...A020158

Для получения дополнительной информации (от 31 до 100) см. OEISA020159 к OEISA020228, а для всех баз до 150 см. таблица псевдопримесей Ферма (текст на немецком языке), эта страница не определяет п является псевдопростом по отношению к основанию, конгруэнтному 1 или -1 (mod п)

Какие базы б сделать п псевдопремиум Ферма?

Если составной четно, тогда является псевдопервичным числом Ферма тривиальной базы .Если составной странно, то является псевдопервичным числом Ферма для тривиальных базисов .

Для любого композита , то количество различных баз по модулю , для которого является основанием псевдопервика Ферма , является[7]:Thm. 1, стр. 1392

где различные простые множители . Сюда входят тривиальные основы.

Например, для , этот продукт . Для , наименьшая такая нетривиальная база равна .

Каждая нечетная композиция является псевдопервичным числом Ферма по крайней мере для двух нетривиальных базисов по модулю если только это степень 3.[7]:Кор. 1, стр. 1393

Для композитного п <200, ниже приводится таблица всех оснований б < п который п - псевдопростое число Ферма. Если составное число п нет в таблице (или п находится в последовательности A209211 ), тогда п является псевдопервичным только для тривиальной базы 1 по модулю п.

пбазы б которому п является псевдопервичным числом Ферма (< п)количество баз б (< п)
(последовательность A063994 в OEIS )
91, 82
151, 4, 11, 144
211, 8, 13, 204
251, 7, 18, 244
271, 262
281, 9, 253
331, 10, 23, 324
351, 6, 29, 344
391, 14, 25, 384
451, 8, 17, 19, 26, 28, 37, 448
491, 18, 19, 30, 31, 486
511, 16, 35, 504
521, 9, 293
551, 21, 34, 544
571, 20, 37, 564
631, 8, 55, 624
651, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 6416
661, 25, 31, 37, 495
691, 22, 47, 684
701, 11, 513
751, 26, 49, 744
761, 45, 493
771, 34, 43, 764
811, 802
851, 4, 13, 16, 18, 21, 33, 38, 47, 52, 64, 67, 69, 72, 81, 8416
871, 28, 59, 864
911, 3, 4, 9, 10, 12, 16, 17, 22, 23, 25, 27, 29, 30, 36, 38, 40, 43, 48,
51, 53, 55, 61, 62, 64, 66, 68, 69, 74, 75, 79, 81, 82, 87, 88, 90
36
931, 32, 61, 924
951, 39, 56, 944
991, 10, 89, 984
1051, 8, 13, 22, 29, 34, 41, 43, 62, 64, 71, 76, 83, 92, 97, 10416
1111, 38, 73, 1104
1121, 65, 813
1151, 24, 91, 1144
1171, 8, 44, 53, 64, 73, 109, 1168
1191, 50, 69, 1184
1211, 3, 9, 27, 40, 81, 94, 112, 118, 12010
1231, 40, 83, 1224
1241, 5, 253
1251, 57, 68, 1244
1291, 44, 85, 1284
1301, 61, 813
1331, 8, 11, 12, 18, 20, 26, 27, 30, 31, 37, 39, 45, 46, 50, 58, 64, 65, 68,
69, 75, 83, 87, 88, 94, 96, 102, 103, 106, 107, 113, 115, 121, 122, 125, 132
36
1351, 26, 109, 1344
1411, 46, 95, 1404
1431, 12, 131, 1424
1451, 12, 17, 28, 41, 46, 57, 59, 86, 88, 99, 104, 117, 128, 133, 14416
1471, 50, 97, 1464
1481, 121, 1373
1531, 8, 19, 26, 35, 53, 55, 64, 89, 98, 100, 118, 127, 134, 145, 15216
1541, 23, 673
1551, 61, 94, 1544
1591, 52, 107, 1584
1611, 22, 139, 1604
1651, 23, 32, 34, 43, 56, 67, 76, 89, 98, 109, 122, 131, 133, 142, 16416
1691, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 16812
1711, 37, 134, 1704
1721, 49, 1653
1751, 24, 26, 51, 74, 76, 99, 101, 124, 149, 151, 17412
1761, 49, 81, 97, 1135
1771, 58, 119, 1764
1831, 62, 121, 1824
1851, 6, 31, 36, 38, 43, 68, 73, 112, 117, 142, 147, 149, 154, 179, 18416
1861, 97, 109, 157, 1635
1871, 67, 120, 1864
1891, 55, 134, 1884
1901, 11, 61, 81, 101, 111, 121, 131, 1619
1951, 14, 64, 79, 116, 131, 181, 1948
1961, 165, 1773

За дополнительной информацией (п = От 201 до 5000), см.[8] эта страница не определяет п является псевдопростом по отношению к основанию, конгруэнтному 1 или -1 (mod п). Когда п это простое число, п2 псевдопростое число Ферма для б если и только если п это Виферих прайм основать б. Например, 10932 = 1194649 - псевдопростое число Ферма по основанию 2, а 112 = 121 - псевдопростое число Ферма по основанию 3.

Количество значений б для п являются (Для п простое число, количество значений б должно быть п - 1, так как все б удовлетворить Маленькая теорема Ферма )

1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 4, 1, 16, 1, 18, 1, 4, 1, 22, 1, 4, 1, 2, 3, 28, 1, 30, 1, 4, 1, 4, 1, 36, 1, 4, 1, 40, 1, 42, 1, 8, 1, 46, 1, 6, 1, ... (последовательность A063994 в OEIS )

Наименьшая база б > 1 который п является псевдопервичным основанием б (или простое число)

2, 3, 2, 5, 2, 7, 2, 9, 8, 11, 2, 13, 2, 15, 4, 17, 2, 19, 2, 21, 8, 23, 2, 25, 7, 27, 26, 9, 2, 31, 2, 33, 10, 35, 6, 37, 2, 39, 14, 41, 2, 43, 2, 45, 8, 47, 2, 49, 18, 51, ... (последовательность A105222 в OEIS )

Количество значений б для п должен разделять (п), или A000010 (п) = 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, ... (The частное может быть любым натуральным числом, а частное = 1 если и только если п это премьер или Число Кармайкла (561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, ... A002997 ), фактор = 2 тогда и только тогда, когда п находится в последовательности: 4, 6, 15, 91, 703, 1891, 2701, 11305, 12403, 13981, 18721, ... A191311 )

Наименьшее число с п ценности б есть (или 0, если такого числа не существует)

1, 3, 28, 5, 66, 7, 232, 45, 190, 11, 276, 13, 1106, 0, 286, 17, 1854, 19, 3820, 891, 2752, 23, 1128, 595, 2046, 0, 532, 29, 1770, 31, 9952, 425, 1288, 0, 2486, 37, 8474, 0, 742, 41, 3486, 43, 7612, 5589, 2356, 47, 13584, 325, 9850, 0, ... (последовательность A064234 в OEIS ) (если и только если п является даже и не тотент из бесквадратный номер, то п-й член этой последовательности равен 0)

Слабые псевдопремы

Составное число п которые удовлетворяют этому называется слабая псевдопервика к базе б. Этому условию удовлетворяет псевдопервичное число, лежащее в основе a (согласно обычному определению). И наоборот, слабое псевдопростое число, взаимно простое с основанием, является псевдопростом в обычном смысле, иначе это может быть, а может и не быть.[9] Наименее слабые псевдопробы для основания б = 1, 2, ... являются:

4, 341, 6, 4, 4, 6, 6, 4, 4, 6, 10, 4, 4, 14, 6, 4, 4, 6, 6, 4, 4, 6, 22, 4, 4, 9, 6, 4, 4, 6, 6, 4, 4, 6, 9, 4, 4, 38, 6, 4, 4, 6, 6, 4, 4, 6, 46, 4, 4, 10, ... (последовательность A000790 в OEIS )

Все члены меньше или равны наименьшему числу Кармайкла, 561. За исключением 561, только полупростые может встречаться в указанной выше последовательности, но не все полупростые числа меньше 561 встречаются, полупростое pq (пq) меньше 561 встречается в приведенных выше последовательностях если и только если п - 1 делит q - 1. (см. OEISA108574) Кроме того, наименьшее псевдопростое число для основания п (также не обязательно превышение п) (OEISA090086) также обычно полупервично, первый контрпример A090086 (648) = 385 = 5 × 7 × 11.

Если нам потребуется п > б, они (для б = 1, 2, ...)

4, 341, 6, 6, 10, 10, 14, 9, 12, 15, 15, 22, 21, 15, 21, 20, 34, 25, 38, 21, 28, 33, 33, 25, 28, 27, 39, 36, 35, 49, 49, 33, 44, 35, 45, 42, 45, 39, 57, 52, 82, 66, 77, 45, 55, 69, 65, 49, 56, 51, ... (последовательность A239293 в OEIS )

Числа Кармайкла являются слабыми псевдопричинениями для всех оснований.

Наименьшее даже слабое псевдопростое число по основанию 2 - 161038 (см. OEISA006935).

Псевдопримеры Эйлера – Якоби

Другой подход - использовать более тонкие понятия псевдопримальности, например сильные псевдопреступности или Псевдопримеры Эйлера – Якоби, для которых нет аналогов Числа Кармайкла. Это ведет к вероятностные алгоритмы такой как Тест на простоту Соловея – Штрассена, то Тест на простоту Baillie-PSW, а Тест на простоту Миллера – Рабина, которые производят то, что известно как простые числа промышленного класса. Простые числа промышленного уровня - это целые числа, для которых первичность не была «сертифицирована» (т.е. строго доказана), но прошла тест, такой как тест Миллера – Рабина, который имеет ненулевую, но произвольно низкую вероятность неудачи.

Приложения

Редкость таких псевдопреступлений имеет важное практическое значение. Например, криптография с открытым ключом такие алгоритмы как ЮАР требуется умение быстро находить большие простые числа. Обычный алгоритм генерации простых чисел состоит в генерации случайных нечетных чисел и тестовое задание их для примитивности. Однако, детерминированный тесты на простоту проходят медленно. Если пользователь готов допустить сколь угодно малую вероятность того, что найденное число не является простым числом, а псевдопростом, можно использовать гораздо более быстрый и простой Тест на простоту Ферма.

использованная литература

  1. ^ а б Сэмюэл С. Вагстафф-мл. (2013). Радость факторинга. Провиденс, Род-Айленд: Американское математическое общество. ISBN  978-1-4704-1048-3.
  2. ^ а б Десмедт, Иво (2010). «Схемы шифрования». В Аталлах, Михаил Дж.; Блэнтон, Марина (ред.). Справочник по алгоритмам и теории вычислений: специальные темы и методы. CRC Press. С. 10–23. ISBN  978-1-58488-820-8.
  3. ^ Пауло Рибенбойм (1996). Новая книга рекордов простых чисел. Нью-Йорк: Springer-Verlag. п. 108. ISBN  0-387-94457-5.
  4. ^ а б Померанс, Карл; Селфридж, Джон Л.; Вагстафф, Сэмюэл С., мл. (Июль 1980 г.). «Псевдопреступности до 25 · 109" (PDF). Математика вычислений. 35 (151): 1003–1026. Дои:10.1090 / S0025-5718-1980-0572872-7.
  5. ^ Олфорд, У.; Гранвиль, Эндрю; Померанс, Карл (1994). «Чисел Кармайкла бесконечно много» (PDF). Анналы математики. 140 (3): 703–722. Дои:10.2307/2118576. JSTOR  2118576.
  6. ^ Серпинский, В. (1988-02-15), "Глава V.7", в ред. А. Шинцель (ред.), Элементарная теория чисел, Математическая библиотека Северной Голландии (2-е изд.), Амстердам: Северная Голландия, стр. 232, ISBN  9780444866622
  7. ^ а б Роберт Бэйли; Сэмюэл С. Вагстафф мл. (Октябрь 1980 г.). "Лукас Псевдопримес" (PDF). Математика вычислений. 35 (152): 1391–1417. Дои:10.1090 / S0025-5718-1980-0583518-6. Г-Н  0583518.
  8. ^ "Pseudoprimzahlen: Tabelle Pseudoprimzahlen (15 - 4999) - Wikibooks, Sammlung freier Lehr-, Sach- und Fachbücher". de.m.wikibooks.org. Получено 21 апреля 2018.
  9. ^ Мишон, Жерар. «Псевдопростые числа, Слабые псевдопредставления, Сильные псевдопредставления, Простое число - Numericana». www.numericana.com. Получено 21 апреля 2018.

внешние ссылки